scholarly journals Physics potential of a muon-proton collider

2021 ◽  
Vol 103 (11) ◽  
Author(s):  
Kingman Cheung ◽  
Zeren Simon Wang
Keyword(s):  
2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Kaustav Chakraborty ◽  
Debajyoti Dutta ◽  
Srubabati Goswami ◽  
Dipyaman Pramanik

Abstract We study the physics potential of the long-baseline experiments T2HK, T2HKK and ESSνSB in the context of invisible neutrino decay. We consider normal mass ordering and assume the state ν3 as unstable, decaying into sterile states during the flight and obtain constraints on the neutrino decay lifetime (τ3). We find that T2HK, T2HKK and ESSνSB are sensitive to the decay-rate of ν3 for τ3/m3 ≤ 2.72 × 10−11s/eV, τ3/m3 ≤ 4.36 × 10−11s/eV and τ3/m3 ≤ 2.43 × 10−11s/eV respectively at 3σ C.L. We compare and contrast the sensitivities of the three experiments and specially investigate the role played by the mixing angle θ23. It is seen that for experiments with flux peak near the second oscillation maxima, the poorer sensitivity to θ23 results in weaker constraints on the decay lifetime. Although, T2HKK has one detector close to the second oscillation maxima, having another detector at the first oscillation maxima results in superior sensitivity to decay. In addition, we find a synergy between the two baselines of the T2HKK experiment which helps in giving a better sensitivity to decay for θ23 in the higher octant. We discuss the octant sensitivity in presence of decay and show that there is an enhancement in sensitivity which occurs due to the contribution from the survival probability Pμμ is more pronounced for the experiments at the second oscillation maxima. We also obtain the combined sensitivity of T2HK+ESSνSB and T2HKK+ESSνSB as τ3/m3 ≤ 4.36 × 10−11s/eV and τ3/m3 ≤ 5.53 × 10−11s/eV respectively at 3σ C.L.


2019 ◽  
Vol 2019 (12) ◽  
Author(s):  
Sanjib Kumar Agarwalla ◽  
Sabya Sachi Chatterjee ◽  
Antonio Palazzo

2017 ◽  
Author(s):  
Son Cao ◽  
Christophe Bronner ◽  
Megan Friend ◽  

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Miguel G. Folgado ◽  
Veronica Sanz

With null results in resonance searches at the LHC, the physics potential focus is now shifting towards the interpretation of nonresonant phenomena. An example of such shift is the increased popularity of the EFT programme. We can embark on such programme owing to the good integrated luminosity and an excellent understanding of the detectors, which will allow these searches to become more intense as the LHC continues. In this paper, we provide a framework to perform this interpretation in terms of a diverse set of scenarios, including (1) generic heavy new physics described at low energies in terms of a derivative expansion, such as in the EFT approach; (2) very light particles with derivative couplings, such as axions or other light pseudo-Goldstone bosons; and (3) the effect of a quasicontinuum of resonances, which can come from a number of strongly coupled theories, extradimensional models, clockwork set-ups, and their deconstructed cousins. These scenarios are not equivalent despite all nonresonance, although the matching among some of them is possible, and we provide it in this paper.


Sign in / Sign up

Export Citation Format

Share Document