scholarly journals Proof of the generalized second law for two-dimensional black holes

2001 ◽  
Vol 64 (6) ◽  
Author(s):  
Jeongwon Ho
2010 ◽  
Vol 33 (5-6) ◽  
pp. 292-295 ◽  
Author(s):  
J.A.S. Lima ◽  
S.H. Pereira ◽  
J.E. Horvath ◽  
Daniel C. Guariento

2011 ◽  
Vol 20 (02) ◽  
pp. 233-252 ◽  
Author(s):  
KHIREDDINE NOUICER

Adopting the thin layer improved brick wall method, we investigate the thermodynamics of a black hole embedded in a spatially flat Friedmann–Robertson–Walker universe. We calculate the temperature and the entropy at every apparent horizon for arbitrary solution of the scale factor. We show that the temperature and entropy display a nontrivial behavior as functions of time. In the case of black holes immersed in a universe driven by phantom energy, we show that for specific ranges of the equation-of-state parameter and apparent horizons the entropy is compatible with the D-bound conjecture, and even the null, dominant and strong energy conditions are violated. In the case of accretion of phantom energy onto a black hole with small Hawking–Hayward quasi-local mass, we obtain an equation-of-state parameter in the range w ≤ -5/3, guaranteeing the validity of the generalized second law.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Georgios K. Karananas ◽  
Alex Kehagias ◽  
John Taskas

Abstract We derive a novel four-dimensional black hole with planar horizon that asymptotes to the linear dilaton background. The usual growth of its entanglement entropy before Page’s time is established. After that, emergent islands modify to a large extent the entropy, which becomes finite and is saturated by its Bekenstein-Hawking value in accordance with the finiteness of the von Neumann entropy of eternal black holes. We demonstrate that viewed from the string frame, our solution is the two-dimensional Witten black hole with two additional free bosons. We generalize our findings by considering a general class of linear dilaton black hole solutions at a generic point along the σ-model renormalization group (RG) equations. For those, we observe that the entanglement entropy is “running” i.e. it is changing along the RG flow with respect to the two-dimensional worldsheet length scale. At any fixed moment before Page’s time the aforementioned entropy increases towards the infrared (IR) domain, whereas the presence of islands leads the running entropy to decrease towards the IR at later times. Finally, we present a four-dimensional charged black hole that asymptotes to the linear dilaton background as well. We compute the associated entanglement entropy for the extremal case and we find that an island is needed in order for it to follow the Page curve.


Sign in / Sign up

Export Citation Format

Share Document