holographic renormalization
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 12)

H-INDEX

24
(FIVE YEARS 1)

2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Marc Geiller ◽  
Christophe Goeller ◽  
Céline Zwikel

Abstract We introduce a new gauge and solution space for three-dimensional gravity. As its name Bondi-Weyl suggests, it leads to non-trivial Weyl charges, and uses Bondi-like coordinates to allow for an arbitrary cosmological constant and therefore spacetimes which are asymptotically locally (A)dS or flat. We explain how integrability requires a choice of integrable slicing and also the introduction of a corner term. After discussing the holographic renormalization of the action and of the symplectic potential, we show that the charges are finite, symplectic and integrable, yet not conserved. We find four towers of charges forming an algebroid given by $$ \mathfrak{vir}\oplus \mathfrak{vir}\oplus $$ vir ⊕ vir ⊕ Heisenberg with three central extensions, where the base space is parametrized by the retarded time. These four charges generate diffeomorphisms of the boundary cylinder, Weyl rescalings of the boundary metric, and radial translations. We perform this study both in metric and triad variables, and use the triad to explain the covariant origin of the corner terms needed for renormalization and integrability.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Laurent Freidel ◽  
Roberto Oliveri ◽  
Daniele Pranzetti ◽  
Simone Speziale

Abstract We propose an extension of the BMS group, which we refer to as Weyl BMS or BMSW for short, that includes super-translations, local Weyl rescalings and arbitrary diffeomorphisms of the 2d sphere metric. After generalizing the Barnich-Troessaert bracket, we show that the Noether charges of the BMSW group provide a centerless representation of the BMSW Lie algebra at every cross section of null infinity. This result is tantamount to proving that the flux-balance laws for the Noether charges imply the validity of the asymptotic Einstein’s equations at null infinity. The extension requires a holographic renormalization procedure, which we construct without any dependence on background fields. The renormalized phase space of null infinity reveals new pairs of conjugate variables. Finally, we show that BMSW group elements label the gravitational vacua.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Chanyong Park ◽  
Jung Hun Lee

Abstract We holographically study the finite-size scaling effects on macroscopic and microscopic quantum correlations deformed by excitation and condensation. The excitation (condensation) increases (decreases) the entanglement entropy of the system. We also investigate the two-point correlation function of local operators by calculating the geodesic length connecting two local operators. As opposed to the entanglement entropy case, the excitation (condensation) decreases (increases) the two-point function. This is because the screening effect becomes strong in the background with the large entanglement entropy. We further show that the holographic renormalization leads to the qualitatively same two-point function as the one obtained from the geodesic length.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Nakwoo Kim ◽  
Se-Jin Kim

Abstract We study the Hamilton-Jacobi formulation of effective mechanical actions associated with holographic renormalization group flows when the field theory is put on the sphere and mass terms are turned on. Although the system is supersymmetric and it is described by a superpotential, Hamilton’s characteristic function is not readily given by the superpotential when the boundary of AdS is curved. We propose a method to construct the solution as a series expansion in scalar field degrees of freedom. The coefficients are functions of the warp factor to be determined by a differential equation one obtains when the ansatz is substituted into the Hamilton-Jacobi equation. We also show how the solution can be derived from the BPS equations without having to solve differential equations. The characteristic function readily provides information on holographic counterterms which cancel divergences of the on-shell action near the boundary of AdS.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Nikolay Bobev ◽  
Anthony M. Charles ◽  
Vincent S. Min

Abstract We find new asymptotically locally AdS4 Euclidean supersymmetric solutions of the STU model in four-dimensional gauged supergravity. These “black saddles” have an S1×$$ {\Sigma}_{\mathfrak{g}} $$ Σ g boundary at asymptotic infinity and cap off smoothly in the interior. The solutions can be uplifted to eleven dimensions and are holographically dual to the topologically twisted ABJM theory on S1×$$ {\Sigma}_{\mathfrak{g}} $$ Σ g . We show explicitly that the on-shell action of the black saddle solutions agrees exactly with the topologically twisted index of the ABJM theory in the planar limit for general values of the magnetic fluxes, flavor fugacities, and real masses. This agreement relies on a careful holographic renormalization analysis combined with a novel UV/IR holographic relation between supergravity parameters and field theory sources. The Euclidean black saddle solution space contains special points that can be Wick-rotated to regular Lorentzian supergravity backgrounds that correspond to the well-known supersymmetric dyonic AdS4 black holes in the STU model.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Giorgos Anastasiou ◽  
Olivera Miskovic ◽  
Rodrigo Olea ◽  
Ioannis Papadimitriou

Abstract We show that the Kounterterms for pure AdS gravity in arbitrary even dimensions coincide with the boundary counterterms obtained through holographic renormalization if and only if the boundary Weyl tensor vanishes. In particular, the Kounterterms lead to a well posed variational problem for generic asymptotically locally AdS manifolds only in four dimensions. We determine the exact form of the counterterms for conformally flat boundaries and demonstrate that, in even dimensions, the Kounterterms take exactly the same form. This agreement can be understood as a consequence of Anderson’s theorem for the renormalized volume of conformally compact Einstein 4-manifolds and its higher dimensional generalizations by Albin and Chang, Qing and Yang. For odd dimensional asymptotically locally AdS manifolds with a conformally flat boundary, the Kounterterms coincide with the boundary counterterms except for the logarithmic divergence associated with the holographic conformal anomaly, and finite local terms.


Sign in / Sign up

Export Citation Format

Share Document