equation of state parameter
Recently Published Documents


TOTAL DOCUMENTS

124
(FIVE YEARS 49)

H-INDEX

16
(FIVE YEARS 4)

2022 ◽  
Vol 2022 (01) ◽  
pp. 002
Author(s):  
Dario Bettoni ◽  
Asier Lopez-Eiguren ◽  
Javier Rubio

Abstract Using 3+1 classical lattice simulations, we follow the symmetry breaking pattern and subsequent non-linear evolution of a spectator field non-minimally coupled to gravity when the post-inflationary dynamics is given in terms of a stiff equation-of-state parameter. We find that the gradient energy density immediately after the transition represents a non-negligible fraction of the total energy budget, steadily growing to equal the kinetic counterpart. This behaviour is reflected on the evolution of the associated equation-of-state parameter, which approaches a universal value 1/3, independently of the shape of non-linear interactions. Combined with kination, this observation allows for the generic onset of radiation domination for arbitrary self-interacting potentials, significantly extending previous results in the literature. The produced spectrum at that time is, however, non-thermal, precluding the naive extraction of thermodynamical quantities like temperature. Potential identifications of the spectator field with the Standard Model Higgs are also discussed.


Author(s):  
Abdul Malik Sultan ◽  
Abdul Jawad

We investigate the cosmological and thermodynamic aspects of Weyl tensor corrected [Formula: see text] gravity. For this purpose, we assume some well-known cosmological bouncing scenarios such as symmetric bounce cosmology, oscillatory cosmology, matter bounce cosmology, little rip cosmology, superbounce cosmology and develop some cosmological parameters. For instance, the equation of state parameter [Formula: see text] describes the quintessence phase for symmetric bounce cosmology, vacuum phase for oscillatory, little rip and matter bounce cosmology while it gives both quintessence and vacuum phases for matter bounce cosmology. It is also observed that the squared speed of sound [Formula: see text] gives positive behavior for all models resulting in that the models assumed are stable. We evaluate generalized second law of thermodynamics which remains valid for all cosmological models except symmetric bounce cosmology. Moreover, we also investigate the thermal equilibrium condition [Formula: see text] and found its validity for all models except symmetric bounce cosmological model.


2021 ◽  
Vol 2021 (12) ◽  
pp. 036
Author(s):  
Rui-Yun Guo ◽  
Lu Feng ◽  
Tian-Ying Yao ◽  
Xing-Yu Chen

Abstract We explore a scenario of interacting dynamical dark energy model with the interaction term Q including the varying equation-of-state parameter w. Using the data combination of the cosmic microwave background, the baryon acoustic oscillation, and the type Ia supernovae, to global fit the interacting dynamical dark energy model, we find that adding a factor of the varying w in the function of Q can change correlations between the coupling constant β and other parameters, and then has a huge impact on the fitting result of β. In this model, the fitting value of H 0 is lower at the 3.54σ level than the direct measurement value of H 0. Comparing to the case of interacting dynamical dark energy model with Q excluding w, the model with Q including the constant w is more favored by the current mainstream observation. To obtain higher fitting values of H 0 and narrow the discrepancy of H 0 between different observations, additional parameters including the effective number of relativistic species, the total neutrino mass, and massive sterile neutrinos are considered in the interacting dynamical dark energy cosmology. We find that the H 0 tension can be further reduced in these models, but is still at the about 3σ level.


Author(s):  
Muhammad Saleem ◽  
Zoya Khan ◽  
Abdul Jawad ◽  
Rubab Manzoor ◽  
Wakeel Ahmed

In the framework of [Formula: see text] gravity, we examine the nature of cosmological parameters by choosing different models of [Formula: see text] gravity at past, present as well as future epoch for Hubble parameter from parameterized deceleration parameters. It is found that equation of state parameter leads to quintessence behavior and its ranges lie within Planck data for different constraints. We also study the squared sound speed and the thermodynamics for specific choice of constants. The squared sound speed corresponds to the viable results. Similarly, the validity of GSLT is also investigated for both linear and nonlinear models of [Formula: see text] theory. However, the thermal equilibrium condition holds for both [Formula: see text] models for specific choice of constants.


Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 300
Author(s):  
Anastasios Theodoropoulos ◽  
Leandros Perivolaropoulos

We present a detailed and pedagogical analysis of recent cosmological data, including CMB, BAO, SnIa and the recent local measurement of H0. We thus obtain constraints on the parameters of these standard dark energy parameterizations, including ΛCDM, and H(z) deformation models such as wCDM (constant equation of state w of dark energy), and the CPL model (corresponding to the evolving dark energy equation-of-state parameter w(z)=w0+waz1+z). The fitted parameters include the dark matter density Ω0m, the SnIa absolute magnitude M, the Hubble constant H0 and the dark energy parameters (e.g., w for wCDM). All models considered lead to a best-fit value of M that is inconsistent with the locally determined value obtained by Cepheid calibrators (M tension). We then use the best-fit dark energy parameters to reconstruct the quintessence Lagrangian that would be able to reproduce these best-fit parameterizations. Due to the derived late phantom behavior of the best-fit dark energy equation-of-state parameter w(z), the reconstructed quintessence models have a negative kinetic term and are therefore plagued with instabilities.


2021 ◽  
Vol 81 (8) ◽  
Author(s):  
Souvik Ghose ◽  
Arunava Bhadra

AbstractRecently, the so-called Hubble Tension, i.e. the mismatch between the local and the cosmological measurements of the Hubble parameter, has been resolved when non-particle dark matter is considered which has a negative equation of state parameter ($$\omega \approx -\,0.01$$ ω ≈ - 0.01 ). We investigate if such a candidate can successfully describe the galactic flat rotation curves. It is found that the flat rotation curve feature puts a stringent constraint on the dark matter equation of state parameter $$\omega $$ ω and $$\omega \approx -\,0.01$$ ω ≈ - 0.01 is not consistent with flat rotational curves, observed around the galaxies. However, a dynamic $$\omega $$ ω of non-particle dark matter may overcome the Hubble tension without affecting the flat rotation curve feature.


Author(s):  
George Alestas ◽  
Leandros Perivolaropoulos

Abstract Many late time approaches for the solution of the Hubble tension use late time smooth deformations of the Hubble expansion rate H(z) of the Planck18/ΛCDM best fit to match the locally measured value of H0 while effectively keeping the comoving distance to the last scattering surface and Ω0mh2 fixed to maintain consistency with Planck CMB measurements. A well known problem of these approaches is that they worsen the fit to low z distance probes. Here we show that another problem of these approaches is that they worsen the level of the Ω0m − σ8 growth tension. We use the generic class of CPL parametrizations corresponding to evolving dark energy equation of state parameter $w(z)=w_0+w_1\frac{z}{1+z}$ with local measurements H0 prior and identify the pairs (w0, w1) that satisfy this condition. This is a generic class of smooth deformations of H(z) that are designed to address the Hubble tension. We show that for these models the growth tension between dynamical probe data and CMB constraints is worse than the corresponding tension of the standard Planck18/ΛCDM model. We justify this feature using a full numerical solution of the growth equation and fit to the data, as well as by using an approximate analytic approach. The problem does not affect recent proposed solutions of the Hubble crisis involving a SnIa intrinsic luminosity transition at zt ≃ 0.01.


2021 ◽  
Vol 36 (10) ◽  
pp. 2150069
Author(s):  
Abdul Jawad ◽  
Sidra Saleem ◽  
Saba Qummer

We examine thermodynamically an extra driving term for the flat universe by applying Sharma Mittal entropy to Padmanabhan’s holographic equipartition law. Deviations from the Bekenstein–Hawking entropy by using this law, we generate an extra driving in the acceleration equation. By using the constant and parametrized equation of state parameter, we investigate the different cosmological parameters like deceleration parameter, squared speed of sound, Om-diagnostic and statefinder parameter through graphical approach. We observe compatible results with current observational data in both models. Generalized second law of thermodynamics also remains valid in both cases.


Sign in / Sign up

Export Citation Format

Share Document