scholarly journals Dirac quasinormal modes in Schwarzschild black hole spacetimes

2003 ◽  
Vol 68 (2) ◽  
Author(s):  
H. T. Cho
2019 ◽  
Vol 100 (10) ◽  
Author(s):  
Chun-Hung Chen ◽  
Hing-Tong Cho ◽  
Alan S. Cornell ◽  
Gerhard E. Harmsen

2006 ◽  
Vol 21 (07) ◽  
pp. 593-601
Author(s):  
JILIANG JING

We study analytically the evolution of massless Dirac fields in the background of the Schwarzschild black hole. It is shown that although the quasinormal frequencies are the same for opposite chirality with the same |k|, we can differentiate neutrinos from anti-neutrinos in evolution of the massless Dirac fields provided we know both stages for the quasinormal modes and the power-law tail behavior since the decay rate of the neutrinos is described by t-(2|k|+1) while anti-neutrinos is t-(2|k|+3).


2009 ◽  
Vol 24 (25) ◽  
pp. 2025-2037 ◽  
Author(s):  
R. SINI ◽  
V. C. KURIAKOSE

We evaluate quasinormal mode frequencies for RN black hole spacetimes with cosmic string perturbed by a massless Dirac field, using Pöschl–Teller potential method. We find that only in the case of RN black hole having small charge, the effect due to cosmic string will dominate when perturbed by a negatively charged Dirac field, but if we are perturbing with positively charged Dirac field decay will be less in the case of black hole having cosmic string compared to the RN black hole without string.


Open Physics ◽  
2008 ◽  
Vol 6 (2) ◽  
Author(s):  
Chunrui Ma ◽  
Yuanxing Gui ◽  
Wei Wang ◽  
Fujun Wang

AbstractWe present the quasinormal frequencies of the massive scalar field in the background of a Schwarzchild black hole surrounded by quintessence with the third-order WKB method. The mass of the scalar field u plays an important role in studying the quasinormal frequencies, the real part of the frequencies increases linearly as mass of the field u increases, while the imaginary part in absolute value decreases linearly which leads to damping more slowly than the massless scalar field. The frequencies have a limited value, so it is easier to detect the quasinormal modes. Moreover, owing to the presence of the quintessence, the massive scalar field damps more slowly.


Sign in / Sign up

Export Citation Format

Share Document