scholarly journals Search for gravitational waves from primordial black hole binary coalescences in the galactic halo

2005 ◽  
Vol 72 (8) ◽  
Author(s):  
B. Abbott ◽  
R. Abbott ◽  
R. Adhikari ◽  
A. Ageev ◽  
B. Allen ◽  
...  
2021 ◽  
Author(s):  
Rui feng Zheng ◽  
Jia ming Shi ◽  
Taotao Qiu

Abstract It is well known that primordial black hole (PBH) can be generated in inflation process of the early universe, especially when the inflaton field has some non-trivial features that could break the slow-roll condition. In this paper, we investigate a toy model of inflation with bumpy potential, which has one or several bumps. We found that potential with multi-bump can give rise to power spectra with multi peaks in small-scale region, which can in turn predict the generation of primordial black holes in various mass ranges. We also consider the two possibilities of PBH formation by spherical collapse and elliptical collapse. And discusses the scalar-induced gravitational waves (SIGWs) generated by the second-order scalar perturbations.


2021 ◽  
Vol 104 (8) ◽  
Author(s):  
Oriol Pujolas ◽  
Ville Vaskonen ◽  
Hardi Veermäe

2020 ◽  
Vol 29 (03) ◽  
pp. 2050028 ◽  
Author(s):  
Guillem Domènech

Gravitational waves (GWs) are inevitably produced by second-order terms in cosmological perturbation theory. Most notably, the so-called induced (GWs) are a window to the small scales part of the primordial spectrum of fluctuations and a key counterpart to the primordial black hole (PBH) scenario. However, semi-analytical solutions are only known for matter and radiation domination eras. In this paper, we present new analytic integral formulas for the induced GWs on subhorizon scales in a general cosmological background with a constant equation-of-state. We also discuss applications to a peaked primordial scalar power spectrum and the PBH scenario.


2017 ◽  
Vol 2017 (09) ◽  
pp. 037-037 ◽  
Author(s):  
Martti Raidal ◽  
Ville Vaskonen ◽  
Hardi Veermäe

2021 ◽  
Vol 503 (1) ◽  
pp. L73-L79
Author(s):  
Deniz Soyuer ◽  
Lorenz Zwick ◽  
Daniel J D’Orazio ◽  
Prasenjit Saha

ABSTRACT The past year has seen numerous publications underlining the importance of a space mission to the ice giants in the upcoming decade. Proposed mission plans involve a ∼10 yr cruise time to the ice giants. This cruise time can be utilized to search for low-frequency gravitational waves (GWs) by observing the Doppler shift caused by them in the Earth–spacecraft radio link. We calculate the sensitivity of prospective ice giant missions to GWs. Then, adopting a steady-state black hole binary population, we derive a conservative estimate for the detection rate of extreme mass ratio inspirals (EMRIs), supermassive black hole (SMBH), and stellar mass binary black hole (sBBH) mergers. We link the SMBH population to the fraction of quasars fbin resulting from Galaxy mergers that pair SMBHs to a binary. For a total of 10 40-d observations during the cruise of a single spacecraft, $\mathcal {O}(f_\mathrm{bin})\sim 0.5$ detections of SMBH mergers are likely, if Allan deviation of Cassini-era noise is improved by ∼102 in the 10−5 − 10−3 Hz range. For EMRIs the number of detections lies between $\mathcal {O}(0.1) \ \mathrm{ and} \ \mathcal {O}(100)$. Furthermore, ice giant missions combined with the Laser Interferometer Space Antenna (LISA) would improve the localization by an order of magnitude compared to LISA by itself.


Sign in / Sign up

Export Citation Format

Share Document