scholarly journals Finite size effects in the Gross-Neveu model with isospin chemical potential

2008 ◽  
Vol 78 (4) ◽  
Author(s):  
D. Ebert ◽  
K. G. Klimenko ◽  
A. V. Tyukov ◽  
V. Ch. Zhukovsky

2020 ◽  
Vol 8 (1) ◽  
Author(s):  
A Gorsky ◽  
O Valba

Abstract In this article, we show numerically the strong finite-size effects in exponential random graphs. Particularly, for the two-star model above the critical value of the chemical potential for triplets a ground state is a star-like graph with the finite set of hubs at network density $p<0.5$ or as the single cluster at $p>0.5$. We find that there exists the critical value of number of nodes $N^{*}(p)$ when the ground state undergoes clear-cut crossover. At $N>N^{*}(p),$ the network flows via a cluster evaporation to the state involving the small star in the Erdős–Rényi environment. The similar evaporation of the cluster takes place at $N>N^{*}(p)$ in the Strauss model. We suggest that the entropic trap mechanism is relevant for microscopic mechanism behind the crossover regime.



2014 ◽  
Vol 77 (6) ◽  
pp. 795-803 ◽  
Author(s):  
V. Ch. Zhukovsky ◽  
K. G. Klimenko ◽  
T. G. Khunjua ◽  
D. Ebert


Author(s):  
Tamaz Khunjua ◽  
Vladimir Zhukovsky ◽  
Dietmar Ebert ◽  
Konstantin Klimenko




2012 ◽  
Vol 97 (1) ◽  
pp. 11002 ◽  
Author(s):  
F. C. Khanna ◽  
A. P. C. Malbouisson ◽  
J. M. C. Malbouisson ◽  
A. E. Santana


2000 ◽  
Vol 10 (PR7) ◽  
pp. Pr7-251-Pr7-254 ◽  
Author(s):  
J. A. Forrest ◽  
J. Mattsson


1997 ◽  
Vol 9 (2) ◽  
pp. 409-412 ◽  
Author(s):  
Samson A. Jenekhe ◽  
Xuejun Zhang ◽  
X. Linda Chen ◽  
Vi-En Choong ◽  
Yongli Gao ◽  
...  


2009 ◽  
Vol 2009 (02) ◽  
pp. P02063 ◽  
Author(s):  
Bernard Nienhuis ◽  
Massimo Campostrini ◽  
Pasquale Calabrese


Sign in / Sign up

Export Citation Format

Share Document