scholarly journals Influence of external magnetic field, finite-size effects and chemical potential on the phase transition of a complex scalar field

2017 ◽  
Vol 77 (10) ◽  
Author(s):  
E. Cavalcanti ◽  
E. Castro ◽  
C. A. Linhares ◽  
A. P. C. Malbouisson
2007 ◽  
Vol 22 (06) ◽  
pp. 1265-1278
Author(s):  
ABOUZEID M. SHALABY ◽  
S. T. EL-BASYOUNY

We established a resummed formula for the effective potential of [Formula: see text] scalar field theory that can mimic the true effective potential not only at the critical region but also at any point in the coupling space. We first extend the effective potential from the oscillator representation method, perturbatively, up to g3 order. We supplement perturbations by the use of a resummation algorithm, originally due to Kleinert, Thoms and Janke, which has the privilege of using the strong coupling as well as the large coupling behaviors rather than the conventional resummation techniques which use only the large order behavior. Accordingly, although the perturbation series available is up to g3 order, we found a good agreement between our resummed effective potential and the well-known features from constructive field theory. The resummed effective potential agrees well with the constructive field theory results concerning existing and order of phase transition in the absence of an external magnetic field. In the presence of the external magnetic field, as in magnetic systems, the effective potential shows nonexistence of phase transition and gives the behavior of the vacuum condensate as a monotonic increasing function of J, in complete agreement with constructive field theory methods.


2008 ◽  
Vol 78 (4) ◽  
Author(s):  
D. Ebert ◽  
K. G. Klimenko ◽  
A. V. Tyukov ◽  
V. Ch. Zhukovsky

2016 ◽  
Vol 30 (30) ◽  
pp. 1650207 ◽  
Author(s):  
R. Acosta Diaz ◽  
N. F. Svaiter

We discuss finite-size effects in one disordered [Formula: see text] model defined in a [Formula: see text]-dimensional Euclidean space. We consider that the scalar field satisfies periodic boundary conditions in one dimension and it is coupled with a quenched random field. In order to obtain the average value of the free energy of the system, we use the replica method. We first discuss finite-size effects in the one-loop approximation in [Formula: see text] and [Formula: see text]. We show that in both cases, there is a critical length where the system develop a second-order phase transition, when the system presents long-range correlations with power-law decay. Next, we improve the above result studying the gap equation for the size-dependent squared mass, using the composite field operator method. We obtain again that the system present a second-order phase transition with long-range correlation with power-law decay.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
A Gorsky ◽  
O Valba

Abstract In this article, we show numerically the strong finite-size effects in exponential random graphs. Particularly, for the two-star model above the critical value of the chemical potential for triplets a ground state is a star-like graph with the finite set of hubs at network density $p<0.5$ or as the single cluster at $p>0.5$. We find that there exists the critical value of number of nodes $N^{*}(p)$ when the ground state undergoes clear-cut crossover. At $N>N^{*}(p),$ the network flows via a cluster evaporation to the state involving the small star in the Erdős–Rényi environment. The similar evaporation of the cluster takes place at $N>N^{*}(p)$ in the Strauss model. We suggest that the entropic trap mechanism is relevant for microscopic mechanism behind the crossover regime.


Sign in / Sign up

Export Citation Format

Share Document