scholarly journals Probing the structure of jet-driven core-collapse supernova and long gamma-ray burst progenitors with high-energy neutrinos

2012 ◽  
Vol 86 (8) ◽  
Author(s):  
Imre Bartos ◽  
Basudeb Dasgupta ◽  
Szabolcs Márka
2016 ◽  
Vol 93 (12) ◽  
Author(s):  
Reetanjali Moharana ◽  
Soebur Razzaque ◽  
Nayantara Gupta ◽  
Peter Mészáros

2020 ◽  
Vol 492 (1) ◽  
pp. 843-847
Author(s):  
Dafne Guetta ◽  
Roi Rahin ◽  
Imre Bartos ◽  
Massimo Della Valle

ABSTRACT The joint observation of core-collapse supernovae with gamma-ray bursts shows that jets can be launched in the aftermath of stellar core collapse, likely by a newly formed black hole that accretes matter from the star. Such gamma-ray bursts have only been observed accompanying Type Ibc supernovae, indicating a stellar progenitor that lost its hydrogen envelope before collapse. According to recent hypothesis, it is possible that jets are launched in core-collapse events even when the progenitors still retain their hydrogen envelopes; however, such jets are not able to burrow through the star and will be stalled into the interior of the progenitor star before escaping. These jets are called choked jets. High-energy neutrinos produced by such choked jets could escape the stellar envelope and could be observed. Here, we examine how multimessenger searches for high-energy neutrinos and core-collapse supernovae can detect or limit the fraction of stellar collapses that produce jets. We find that a high fraction of jet production is already limited by previous observational campaigns. We explore possibilities with future observations using Large Synoptic Survey Telescope, IceCube, and Km3NET.


2005 ◽  
Vol 20 (31) ◽  
pp. 2351-2367 ◽  
Author(s):  
SOEBUR RAZZAQUE ◽  
PETER MÉSZÁROS ◽  
ELI WAXMAN

It has been hypothesized recently that core collapse supernovae are triggered by mildly relativistic jets following observations of radio properties of these explosions. Association of a jet, similar to a gamma-ray burst jet but only slower, allows shock acceleration of particles to high energy and non-thermal neutrino emission from a supernova. Detection of these high energy neutrinos in upcoming kilometer scale Cherenkov detectors may be the only direct way to probe inside these astrophysical phenomena as electromagnetic radiation is thermal and contains little information. Calculation of high energy neutrino signal from a simple and slow jet model buried inside the pre-supernova star is reviewed here. The detection prospect of these neutrinos in water or ice detector is also discussed in this brief review. Jetted core collapse supernovae in nearby galaxies may provide the strongest high energy neutrino signal from point sources.


Sign in / Sign up

Export Citation Format

Share Document