scholarly journals Radiative corrections to Higgs boson masses for the MSSM Higgs potential with dimension-six operators

2017 ◽  
Vol 95 (5) ◽  
Author(s):  
M. N. Dubinin ◽  
E. Yu. Petrova
2001 ◽  
Vol 501 (1-2) ◽  
pp. 69-77 ◽  
Author(s):  
A. Katsikatsou ◽  
A.B. Lahanas ◽  
D.V. Nanopoulos ◽  
V.C. Spanos

1991 ◽  
Vol 262 (4) ◽  
pp. 477-484 ◽  
Author(s):  
John Ellis ◽  
Giovanni Ridolfi ◽  
Fabio Zwirner

2015 ◽  
Vol 2015 ◽  
pp. 1-26 ◽  
Author(s):  
S. Heinemeyer ◽  
J. Hernandez-Garcia ◽  
M. J. Herrero ◽  
X. Marcano ◽  
A. M. Rodriguez-Sanchez

We study the radiative corrections to the mass of the lightest Higgs boson of the MSSM from three generations of Majorana neutrinos and sneutrinos. The spectrum of the MSSM is augmented by three right handed neutrinos and their supersymmetric partners. A seesaw mechanism of type I is used to generate the physical neutrino masses and oscillations that we require to be in agreement with present neutrino data. We present a full one-loop computation of these Higgs mass corrections and analyze in full detail their numerical size in terms of both the MSSM and the new (s)neutrino parameters. A critical discussion on the different possible renormalization schemes and their implications, in particular concerning decoupling, is included.


2019 ◽  
Vol 34 (16) ◽  
pp. 1950123 ◽  
Author(s):  
Damiano Anselmi

Several particles are not observed directly, but only through their decay products. We consider the possibility that they might be fakeons, i.e. fake particles, which mediate interactions but are not asymptotic states. A crucial role to determine the true nature of a particle is played by the imaginary parts of the one-loop radiative corrections, which are affected in nontrivial ways by the presence of fakeons in the loop. The knowledge we have today is sufficient to prove that most non-directly observed particles are true physical particles. However, in the case of the Higgs boson the possibility that it might be a fakeon remains open. The issue can be resolved by means of precision measurements in existing and future accelerators.


Sign in / Sign up

Export Citation Format

Share Document