scholarly journals Publisher’s Note: Role of symmetries in the Kerr-Schild derivation of the Kerr black hole [Phys. Rev. D 94 , 064073 (2016)]

2017 ◽  
Vol 96 (4) ◽  
Author(s):  
Eloy Ayon-Beato ◽  
Mokhtar Hassaïne ◽  
Daniel Higuita-Borja
Keyword(s):  
2010 ◽  
Vol 6 (S274) ◽  
pp. 246-248
Author(s):  
N. Globus ◽  
C. Sauty ◽  
V. Cayatte

AbstractAn ideal engine for producing ultrarelativistic jets is a rapidly rotating black hole threaded by a magnetic field. Following the 3+1 decomposion of spacetime of Thorne et al. (1986), we use a local inertial frame of reference attached to an observer comoving with the frame-dragging of the Kerr black hole (ZAMO) to write the GRMHD equations. Assuming θ-self similarity, analytical solutions for jets can be found for which the streamline shape is calculated exactly. Calculating the total energy variation between a non polar streamline and the polar axis, we have extended to the Kerr metric the simple criterion for the magnetic collimation of jets developed by Sauty et al. (1999). We show that the black hole rotation induces a more efficient magnetic collimation of the jet.


2013 ◽  
Vol 28 (11) ◽  
pp. 1350037 ◽  
Author(s):  
O. B. ZASLAVSKII

We show that recent observation made by Grib and Pavlov, [A. A. Grib and Yu. V. Pavlov, Europhys. Lett.101, 20004 (2013)] for the Kerr black hole is valid in the general case of rotating axially symmetric metric. Namely, collision of two particles in the ergosphere leads to indefinite growth of the energy in the center-of-mass frame, provided the angular momentum of one of the two particles is negative and increases without limit for a fixed energy at infinity. General approach enabled us to elucidate why the role of the ergosphere is crucial in this process.


2016 ◽  
Vol 94 (6) ◽  
Author(s):  
Eloy Ayón-Beato ◽  
Mokhtar Hassaïne ◽  
Daniel Higuita-Borja
Keyword(s):  

2021 ◽  
pp. 2150177
Author(s):  
G. E. Volovik

For the Schwarzschild black hole, the Bekenstein–Hawking entropy is proportional to the area of the event horizon. For the black holes with two horizons, the thermodynamics is not very clear, since the role of the inner horizons is not well established. Here we calculate the entropy of the Reissner–Nordström black hole and of the Kerr black hole, which have two horizons. For the spherically symmetric Reissner–Nordström black hole, we used several different approaches. All of them give the same result for the entropy and for the corresponding temperature of the thermal Hawking radiation. The entropy is not determined by the area of the outer horizon, and it is not equal to the sum of the entropies of two horizons. It is determined by the correlations between the two horizons, due to which the total entropy of the black hole and the temperature of Hawking radiation depend only on mass M of the black hole and do not depend on the black hole charge Q. For the Kerr and Kerr–Newman black holes, it is shown that their entropy has the similar property: it depends only on mass M of the black hole and does not depend on the angular momentum J and charge Q.


2021 ◽  
Vol 103 (2) ◽  
Author(s):  
Alejandro Aguayo-Ortiz ◽  
Olivier Sarbach ◽  
Emilio Tejeda
Keyword(s):  

2018 ◽  
Vol 27 (03) ◽  
pp. 1850023 ◽  
Author(s):  
Pratik Tarafdar ◽  
Tapas K. Das

Linear perturbation of general relativistic accretion of low angular momentum hydrodynamic fluid onto a Kerr black hole leads to the formation of curved acoustic geometry embedded within the background flow. Characteristic features of such sonic geometry depend on the black hole spin. Such dependence can be probed by studying the correlation of the acoustic surface gravity [Formula: see text] with the Kerr parameter [Formula: see text]. The [Formula: see text]–[Formula: see text] relationship further gets influenced by the geometric configuration of the accretion flow structure. In this work, such influence has been studied for multitransonic shocked accretion where linear perturbation of general relativistic flow profile leads to the formation of two analogue black hole-type horizons formed at the sonic points and one analogue white hole-type horizon which is formed at the shock location producing divergent acoustic surface gravity. Dependence of the [Formula: see text]–[Formula: see text] relationship on the geometric configuration has also been studied for monotransonic accretion, over the entire span of the Kerr parameter including retrograde flow. For accreting astrophysical black holes, the present work thus investigates how the salient features of the embedded relativistic sonic geometry may be determined not only by the background spacetime, but also by the flow configuration of the embedding matter.


Sign in / Sign up

Export Citation Format

Share Document