scholarly journals Non-Gaussian enhancements of galactic halo correlations in quasi-single field inflation

2018 ◽  
Vol 97 (12) ◽  
Author(s):  
Haipeng An ◽  
Michael McAneny ◽  
Alexander K. Ridgway ◽  
Mark B. Wise
2018 ◽  
Vol 2018 (05) ◽  
pp. 024-024 ◽  
Author(s):  
Rafael Bravo ◽  
Sander Mooij ◽  
Gonzalo A. Palma ◽  
Bastián Pradenas

2012 ◽  
Vol 2012 (09) ◽  
pp. 007-007 ◽  
Author(s):  
Ivan Agullo ◽  
Sarah Shandera
Keyword(s):  

Author(s):  
Bradley Greig ◽  
Andrei Mesinger ◽  
Léon V E Koopmans

Abstract Interferometry of the cosmic 21-cm signal is set to revolutionise our understanding of the Epoch of Reionisation (EoR) and the Cosmic Dawn (CD). The culmination of ongoing efforts will be the upcoming Square Kilometre Array (SKA), which will provide tomography of the 21-cm signal from the first billion years of our Universe. Using a galaxy formation model informed by high-z luminosity functions, here we forecast the accuracy with which the first phase of SKA-low (SKA1-low) can constrain the properties of the unseen galaxies driving the astrophysics of the EoR and CD. We consider three observing strategies: (i) deep (1000h on a single field); (ii) medium-deep (100hr on 10 independent fields); and (iii) shallow (10hr on 100 independent fields). Using the 21-cm power spectrum as a summary statistic, and conservatively only using the 21-cm signal above the foreground wedge, we predict that all three observing strategies should recover astrophysical parameters to a fractional precision of ∼0.1 – 10 per cent. The reionisation history is recovered to an uncertainty of $\Delta z \mathrel {\lesssim}0.1$ (1σ) for the bulk of its duration. The medium-deep strategy, balancing thermal noise against cosmic variance, results in the tightest constraints, slightly outperforming the deep strategy. The shallow observational strategy performs the worst, with up to a ∼10 – 60 per cent increase in the recovered uncertainty. We note, however, that non-Gaussian summary statistics, tomography, as well as unbiased foreground removal would likely favour the deep strategy.


1988 ◽  
Vol 132 ◽  
pp. 501-506
Author(s):  
C. Sneden ◽  
C. A. Pilachowski ◽  
K. K. Gilroy ◽  
J. J. Cowan

Current observational results for the abundances of the very heavy elements (Z>30) in Population II halo stars are reviewed. New high resolution, low noise spectra of many of these extremely metal-poor stars reveal general consistency in their overall abundance patterns. Below Galactic metallicities of [Fe/H] Ã −2, all of the very heavy elements were manufactured almost exclusively in r-process synthesis events. However, there is considerable star-to-star scatter in the overall level of very heavy element abundances, indicating the influence of local supernovas on element production in the very early, unmixed Galactic halo. The s-process appears to contribute substantially to stellar abundances only in stars more metal-rich than [Fe/H] Ã −2.


Author(s):  
W. Kunath ◽  
K. Weiss ◽  
E. Zeitler

Bright-field images taken with axial illumination show spurious high contrast patterns which obscure details smaller than 15 ° Hollow-cone illumination (HCI), however, reduces this disturbing granulation by statistical superposition and thus improves the signal-to-noise ratio. In this presentation we report on experiments aimed at selecting the proper amount of tilt and defocus for improvement of the signal-to-noise ratio by means of direct observation of the electron images on a TV monitor.Hollow-cone illumination is implemented in our microscope (single field condenser objective, Cs = .5 mm) by an electronic system which rotates the tilted beam about the optic axis. At low rates of revolution (one turn per second or so) a circular motion of the usual granulation in the image of a carbon support film can be observed on the TV monitor. The size of the granular structures and the radius of their orbits depend on both the conical tilt and defocus.


Sign in / Sign up

Export Citation Format

Share Document