scholarly journals Mass and spin of a Kerr black hole in modified gravity and a test of the Kerr black hole hypothesis

2018 ◽  
Vol 97 (12) ◽  
Author(s):  
Pankaj Sheoran ◽  
Alfredo Herrera-Aguilar ◽  
Ulises Nucamendi
2017 ◽  
Vol 26 (14) ◽  
pp. 1750156 ◽  
Author(s):  
Ahmed Alhamzawi

A study of the shadow cast by rotating black holes in different models of modified gravity is presented. It is shown that the size of the shadow cast depends on the modified gravity model used. The distortions of the shadow cast by modified gravity black holes are investigated and the effects are compared with the distortions cast by Kerr black hole. The shadow of a rotating black hole in modified gravity is found to be similar to the shadow cast by Kerr black hole but with different sizes and distortion effects. The naked singularity by rotating modified gravity black hole is discussed. Finally, it is shown that some modified gravity models can present a considerable contribution to the size of black hole shadow.


2021 ◽  
Vol 81 (2) ◽  
Author(s):  
J. W. Moffat

AbstractA regular rotating MOG (modified gravity) compact object is derived that reduces to the Kerr black hole when the parameter $$\alpha =0$$ α = 0 . Physical consequences of the dark compact object, which is regular everywhere in spacetime for $$\alpha > \alpha _\mathrm{crit}=0.674$$ α > α crit = 0.674 and is a rotating Kerr-MOG black hole for $$\alpha < \alpha _\mathrm{crit}$$ α < α crit are investigated.


2021 ◽  
Vol 31 ◽  
pp. 100756
Author(s):  
Jin-Zhao Yang ◽  
Shahab Shahidi ◽  
Tiberiu Harko ◽  
Shi-Dong Liang

2021 ◽  
Vol 103 (2) ◽  
Author(s):  
Alejandro Aguayo-Ortiz ◽  
Olivier Sarbach ◽  
Emilio Tejeda
Keyword(s):  

2018 ◽  
Vol 27 (03) ◽  
pp. 1850023 ◽  
Author(s):  
Pratik Tarafdar ◽  
Tapas K. Das

Linear perturbation of general relativistic accretion of low angular momentum hydrodynamic fluid onto a Kerr black hole leads to the formation of curved acoustic geometry embedded within the background flow. Characteristic features of such sonic geometry depend on the black hole spin. Such dependence can be probed by studying the correlation of the acoustic surface gravity [Formula: see text] with the Kerr parameter [Formula: see text]. The [Formula: see text]–[Formula: see text] relationship further gets influenced by the geometric configuration of the accretion flow structure. In this work, such influence has been studied for multitransonic shocked accretion where linear perturbation of general relativistic flow profile leads to the formation of two analogue black hole-type horizons formed at the sonic points and one analogue white hole-type horizon which is formed at the shock location producing divergent acoustic surface gravity. Dependence of the [Formula: see text]–[Formula: see text] relationship on the geometric configuration has also been studied for monotransonic accretion, over the entire span of the Kerr parameter including retrograde flow. For accreting astrophysical black holes, the present work thus investigates how the salient features of the embedded relativistic sonic geometry may be determined not only by the background spacetime, but also by the flow configuration of the embedding matter.


2005 ◽  
Vol 44 (6) ◽  
pp. 1037-1040
Author(s):  
Ren Zhao ◽  
Sheng-Li Zhang

Sign in / Sign up

Export Citation Format

Share Document