metric fluctuations
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 12)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Joel Acosta ◽  
Alan Garbarz ◽  
Andrés Goya ◽  
Mauricio Leston

Abstract We continue the study of the one-loop partition function of AdS3 gravity with focus on the square-integrability condition on the fluctuating fields. In a previous work we found that the Brown-Henneaux boundary conditions follow directly from the L2 condition. Here we rederive the partition function as a ratio of Laplacian determinants by performing a suitable decomposition of the metric fluctuations. We pay special attention to the asymptotics of the fields appearing in the partition function. We also show that in the usual computation using ghost fields for the de Donder gauge, such gauge condition is accessible precisely for square-integrable ghost fields. Finally, we compute the spectrum of the relevant Laplacians in thermal AdS3, in particular noticing that there are no isolated eigenvalues, only essential spectrum. This last result supports the analytic continuation approach of David, Gaberdiel and Gopakumar. The purely essential spectra found are consistent with the independent results of Lee and Delay of the essential spectrum of the TT rank-2 tensor Lichnerowickz Laplacian on asymptotically hyperbolic spaces.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Evan Coleman ◽  
Vasudev Shyam

Abstract We construct a particular flow in the space of 2D Euclidean QFTs on a torus, which we argue is dual to a class of solutions in 3D Euclidean gravity with conformal boundary conditions. This new flow comes from a Legendre transform of the kernel which implements the T$$ \overline{T} $$ T ¯ deformation, and is motivated by the need for boundary conditions in Euclidean gravity to be elliptic, i.e. that they have well-defined propagators for metric fluctuations. We demonstrate equivalence between our flow equation and variants of the Wheeler de-Witt equation for a torus universe in the so-called Constant Mean Curvature (CMC) slicing. We derive a kernel for the flow, and we compute the corresponding ground state energy in the low-temperature limit. Once deformation parameters are fixed, the existence of the ground state is independent of the initial data, provided the seed theory is a CFT. The high-temperature density of states has Cardy-like behavior, rather than the Hagedorn growth characteristic of T$$ \overline{T} $$ T ¯ -deformed theories.


Physics ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 689-714
Author(s):  
Zahra Haghani ◽  
Tiberiu Harko

In this paper, the effects of the quantum metric fluctuations on the background cosmological dynamics of the universe are considered. To describe the quantum effects, the metric is assumed to be given by the sum of a classical component and a fluctuating component of quantum origin . At the classical level, the Einstein gravitational field equations are equivalent to a modified gravity theory, containing a non-minimal coupling between matter and geometry. The gravitational dynamics is determined by the expectation value of the fluctuating quantum correction term, which can be expressed in terms of an arbitrary tensor Kμν. To fix the functional form of the fluctuation tensor, the Newtonian limit of the theory is considered, from which the generalized Poisson equation is derived. The compatibility of the Newtonian limit with the Solar System tests allows us to fix the form of Kμν. Using these observationally consistent forms of Kμν, the generalized Friedmann equations are obtained in the presence of quantum fluctuations of the metric for the case of a flat homogeneous and isotropic geometry. The corresponding cosmological models are analyzed using both analytical and numerical method. One finds that a large variety of cosmological models can be formulated. Depending on the numerical values of the model parameters, both accelerating and decelerating behaviors can be obtained. The obtained results are compared with the standard ΛCDM (Λ Cold Dark Matter) model.


2021 ◽  
Vol 2021 (07) ◽  
pp. 021
Author(s):  
G. Fanizza ◽  
M. Gasperini ◽  
E. Pavone ◽  
L. Tedesco
Keyword(s):  

Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 834
Author(s):  
Quentin G. Bailey

We examined the basic conservation laws for diffeomorphism symmetry in the context of spontaneous diffeomorphism and local Lorentz-symmetry breaking. The conservation laws were used as constraints on a generic series of terms in an expansion around a flat background. We found all such terms for a two-tensor coupling to cubic order in the metric and tensor field fluctuations. The results are presented in a form that can be used for phenomenological calculations. One key result is that if we preserve the underlying diffeomorphism symmetry in a spontaneous-symmetry breaking scenario, one cannot decouple the two-tensor fluctuations from the metric fluctuations at the level of the action, except in special cases of the quadratic actions.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Robert Brandenberger ◽  
Lavinia Heisenberg ◽  
Jakob Robnik

Abstract We propose a construction with which to resolve the black hole singularity and enable an anisotropic cosmology to emerge from the inside of the hole. The model relies on the addition of an S-brane to the effective action which describes the geometry of space-time. This space-like defect is located inside of the horizon on a surface where the Weyl curvature reaches a limiting value. We study how metric fluctuations evolve from the outside of the black hole to the beginning of the cosmological phase to the future of the S-brane. Our setup addresses i) the black hole singularity problem, ii) the cosmological singularity problem and iii) the information loss paradox since the outgoing Hawking radiation is entangled with the state inside the black hole which becomes the new universe.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jan M. Pawlowski ◽  
Manuel Reichert

In this contribution, we discuss the asymptotic safety scenario for quantum gravity with a functional renormalization group approach that disentangles dynamical metric fluctuations from the background metric. We review the state of the art in pure gravity and general gravity–matter systems. This includes the discussion of results on the existence and properties of the asymptotically safe ultraviolet fixed point, full ultraviolet-infrared trajectories with classical gravity in the infrared, and the curvature dependence of couplings also in gravity–matter systems. The results in gravity–matter systems concern the ultraviolet stability of the fixed point and the dominance of gravity fluctuations in minimally coupled gravity–matter systems. Furthermore, we discuss important physics properties such as locality of the theory, diffeomorphism invariance, background independence, unitarity, and access to observables, as well as open challenges.


Universe ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 40
Author(s):  
Jeong-Myeong Bae ◽  
Ido Ben-Dayan ◽  
Marcelo Schiffer ◽  
Gibum Yun ◽  
Heeseung Zoe

We discuss the possibility that gravitational fluctuations (“gravitational-waves”) are trapped in space by gravitational interactions in two dimensional Jackiw–Teitelboim gravity. In the standard geon (gravitational electromagnetic entity) approach, the effective energy is entirely deposited in a thin layer, the active region, that achieves spatial self-confinement and raises doubts about the geon’s stability. In this paper we relinquish the “active region” approach and obtain self-confinement of “gravitational waves” that are trapped by the vacuum geometry and can be stable against the backreaction due to metric fluctuations.


2021 ◽  
Vol 31 ◽  
pp. 100756
Author(s):  
Jin-Zhao Yang ◽  
Shahab Shahidi ◽  
Tiberiu Harko ◽  
Shi-Dong Liang

Sign in / Sign up

Export Citation Format

Share Document