scholarly journals Light Higgs boson from a pole attractor

2018 ◽  
Vol 98 (1) ◽  
Author(s):  
Oleksii Matsedonskyi ◽  
Marc Montull
2014 ◽  
Vol 29 (18) ◽  
pp. 1430032 ◽  
Author(s):  
S. Heinemeyer ◽  
M. Mondragón ◽  
G. Zoupanos

Finite Unified Theories (FUTs) are N = 1 supersymmetric Grand Unified Theories (GUTs) which can be made finite to all-loop orders, based on the principle of reduction of couplings, and therefore are provided with a large predictive power. We confront the predictions of an SU(5) FUT with the top and bottom quark masses and other low-energy experimental constraints, resulting in a relatively heavy SUSY spectrum, naturally consistent with the nonobservation of those particles at the LHC. The light Higgs boson mass is automatically predicted in the range compatible with the Higgs discovery at the LHC. Requiring a light Higgs boson mass in the precise range of Mh= 125.6 ±2.1 GeV favors the lower part of the allowed spectrum, resulting in clear predictions for the discovery potential at current and future pp, as well as future e+e-colliders.


Author(s):  
T. Biekötter ◽  
M. Chakraborti ◽  
S. Heinemeyer

The CMS collaboration reported an intriguing [Formula: see text] (local) excess at 96 GeV in the light Higgs-boson search in the diphoton decay mode. This mass coincides with a [Formula: see text] (local) excess in the [Formula: see text] final state at LEP. We briefly review the proposed combined interpretations for the two excesses. In more detail, we review the interpretation of this possible signal as the lightest Higgs boson in the 2 Higgs Doublet Model with an additional real Higgs singlet (N2HDM). We show which channels have the best prospects for the discovery of additional Higgs bosons at the upcoming Run 3 of the LHC.


2007 ◽  
Vol 75 (3) ◽  
Author(s):  
Riccardo Barbieri ◽  
Lawrence J. Hall ◽  
Yasunori Nomura ◽  
Vyacheslav S. Rychkov

1989 ◽  
Vol 39 (1) ◽  
pp. 365-367 ◽  
Author(s):  
Ehud Duchovni ◽  
Eilam Gross ◽  
George Mikenberg

2011 ◽  
Vol 26 (23) ◽  
pp. 4053-4065 ◽  
Author(s):  
PAOLO LODONE

We consider the λSUSY model, a version of the NMSSM with large λH1H2S coupling, relaxing the approximation of large singlet mass and negligible mixing of the scalar singlet with the scalar doublets. We show that there are regions of the parameter space in which the lightest pseudoscalar can be relatively light, with unusual consequences on the decay pattern of the CP-even Higgs bosons and thus on the LHC phenomenology.


2013 ◽  
Vol 28 (20) ◽  
pp. 1330015 ◽  
Author(s):  
NIKOLAS KAUER

The zero-width approximation (ZWA) restricts the intermediate unstable particle state to the mass shell and, when combined with the decorrelation approximation, fully factorizes the production and decay of unstable particles. The ZWA uncertainty is expected to be of [Formula: see text], where M and Γ are the mass and width of the unstable particle. We review the ZWA and demonstrate that errors can be much larger than expected if a significant modification of the Breit–Wigner lineshape occurs. A thorough examination of the recently discovered candidate Standard Model Higgs boson is in progress. For MH≈125 GeV, one has ΓH/MH < 10-4, which suggests an excellent accuracy of the ZWA. We show that this is not always the case. The inclusion of off-shell contributions is essential to obtain an accurate Higgs signal normalization at the 1% precision level. For gg→H→VV, V = W, Z, [Formula: see text] corrections occur due to an enhanced Higgs signal in the region MVV > 2MV, where also sizable Higgs-continuum interference occurs. We discuss how experimental selection cuts can be used to suppress this region in search channels where the Higgs mass cannot be reconstructed. We note that H→VV decay modes in non-gluon-fusion channels are similarly affected.


1989 ◽  
Vol 39 (9) ◽  
pp. 2784-2787 ◽  
Author(s):  
R. S. Willey

Sign in / Sign up

Export Citation Format

Share Document