light higgs boson
Recently Published Documents


TOTAL DOCUMENTS

123
(FIVE YEARS 9)

H-INDEX

27
(FIVE YEARS 2)

2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Tianjun Li ◽  
James A. Maxin ◽  
Dimitri V. Nanopoulos

AbstractThe Fermi National Accelerator Laboratory (FNAL) recently announced confirmation of the Brookhaven National Lab (BNL) measurements of the $$g-2$$ g - 2 of the muon that uncovered a discrepancy with the theoretically calculated Standard Model value. We suggest an explanation for the combined BNL+FNAL 4.2$$\sigma $$ σ deviation within the supersymmetric grand unification theory (GUT) model No-Scale $${\mathcal {F}}$$ F -$$SU(5)$$ S U ( 5 ) supplemented with a string derived TeV-scale extra $$10+\overline{10}$$ 10 + 10 ¯ vector-like multiplet and charged vector-like singlet $$(XE,XE^c)$$ ( X E , X E c ) , dubbed flippons. We introduced these vector-like particles into No-Scale Flipped SU(5) many years ago, and as a result, the renormalization group equation (RGE) running was immediately shaped to produce a distinctive and rather beneficial two-stage gauge coupling unification process to avoid the Landau pole and lift unification to the string scale, in addition to contributing through 1-loop to the light Higgs boson mass. The flippons have long stood ready to tackle another challenge, and now do so yet again, where the charged vector-like “lepton”/singlet couples with the muon, the supersymmetric down-type Higgs $$H_d$$ H d , and a singlet S, using a chirality flip to easily accommodate the muonic $$g-2$$ g - 2 discrepancy in No-Scale $${\mathcal {F}}$$ F -$$SU(5)$$ S U ( 5 ) . Considering the phenomenological success of this string derived model over the prior 11 years that remains accommodative of all presently available LHC limits plus all other experimental constraints, including no fine-tuning, and the fact that for the first time a Starobinsky-like inflationary model consistent with all cosmological data was derived from superstring theory in No-Scale Flipped SU(5), we believe it is imperative to reconcile the BNL+FNAL developments within the model space.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Joseph L. Lamborn ◽  
Tianjun Li ◽  
James A. Maxin ◽  
Dimitri V. Nanopoulos

Abstract A discrepancy between the measured anomalous magnetic moment of the muon (g − 2)μ and computed Standard Model value now stands at a combined 4.2σ following experiments at Brookhaven National Lab (BNL) and the Fermi National Accelerator Laboratory (FNAL). A solution to the disagreement is uncovered in flipped SU(5) with additional TeV-Scale vector-like 10 + $$ \overline{\mathbf{10}} $$ 10 ¯ multiplets and charged singlet derived from local F-Theory, collectively referred to as $$ \mathcal{F} $$ F –SU(5). Here we engage general No-Scale supersymmetry (SUSY) breaking in $$ \mathcal{F} $$ F –SU(5) D-brane model building to alleviate the (g −2)μ tension between the Standard Model and observations. A robust ∆aμ(SUSY) is realized via mixing of M5 and M1X at the secondary SU(5) × U(1)X unification scale in $$ \mathcal{F} $$ F –SU(5) emanating from SU(5) breaking and U(1)X flux effects. Calculations unveil ∆aμ(SUSY) = 19.0–22.3 × 10−10 for gluino masses of M($$ \overset{\sim }{g} $$ g ~ )= 2.25–2.56 TeV and higgsino dark matter, aptly residing within the BNL+FNAL 1σ mean. This (g − 2)μ favorable region of the model space also generates the correct light Higgs boson mass and branching ratios of companion rare decay processes, and is further consistent with all LHC Run 2 constraints. Finally, we also examine the heavy SUSY Higgs boson in light of recent LHC searches for an extended Higgs sector.


Author(s):  
T. Biekötter ◽  
M. Chakraborti ◽  
S. Heinemeyer

The CMS collaboration reported an intriguing [Formula: see text] (local) excess at 96 GeV in the light Higgs-boson search in the diphoton decay mode. This mass coincides with a [Formula: see text] (local) excess in the [Formula: see text] final state at LEP. We briefly review the proposed combined interpretations for the two excesses. In more detail, we review the interpretation of this possible signal as the lightest Higgs boson in the 2 Higgs Doublet Model with an additional real Higgs singlet (N2HDM). We show which channels have the best prospects for the discovery of additional Higgs bosons at the upcoming Run 3 of the LHC.


2021 ◽  
pp. 136241
Author(s):  
Kristjan Kannike ◽  
Luca Marzola ◽  
Martti Raidal ◽  
Alessandro Strumia

2020 ◽  
Vol 80 (10) ◽  
Author(s):  
P. Drechsel ◽  
G. Moortgat-Pick ◽  
G. Weiglein

AbstractThe particle discovered in the Higgs boson searches at the LHC with a mass of about 125 GeV is compatible within the present uncertainties with the Higgs boson predicted in the Standard Model (SM), but it could also be identified with one of the neutral Higgs bosons in a variety of beyond the SM (BSM) theories with an extended Higgs sector. The possibility that an additional Higgs boson (or even more than one) could be lighter than the state that has been detected at 125 GeV occurs generically in many BSM models and has some support from slight excesses that were observed above the background expectations in Higgs searches at LEP and at the LHC. The couplings between additional Higgs fields and the electroweak gauge bosons in BSM theories could be probed by model-independent Higgs searches at lepton colliders. We present a generator-level extrapolation of the limits obtained at LEP to the case of a future $$e^+e^-$$ e + e - collider, both for the search where the light Higgs boson decays into a pair of bottom quarks and for the decay-mode-independent search utilising the recoil method. We find that at the ILC with a centre-of-mass energy of 250 GeV, an integrated luminosity of 500 fb$$^{-1}$$ - 1 and polarised beams, the sensitivity to a light Higgs boson with reduced couplings to gauge bosons is improved by more than an order of magnitude compared to the LEP limits and goes much beyond the projected indirect sensitivity of the HL-LHC with 3000 fb$$^{-1}$$ - 1 from the rate measurements of the detected state at 125 GeV.


Universe ◽  
2020 ◽  
Vol 6 (7) ◽  
pp. 96 ◽  
Author(s):  
R. J. Crewther

A genuine dilaton σ allows scales to exist even in the limit of exact conformal invariance. In gauge theories, these may occur at an infrared fixed point (IRFP) α IR through dimensional transmutation. These large scales at α IR can be separated from small scales produced by θ μ μ , the trace of the energy-momentum tensor. For quantum chromodynamics (QCD), the conformal limit can be combined with chiral S U ( 3 ) × S U ( 3 ) symmetry to produce chiral-scale perturbation theory χ PT σ , with f 0 ( 500 ) as the dilaton. The technicolor (TC) analogue of this is crawling TC: at low energies, the gauge coupling α goes directly to (but does not walk past) α IR , and the massless dilaton at α IR corresponds to a light Higgs boson at α ≲ α IR . It is suggested that the W ± and Z 0 bosons set the scale of the Higgs boson mass. Unlike crawling TC, in walking TC, θ μ μ produces all scales, large and small, so it is hard to argue that its “dilatonic” candidate for the Higgs boson is not heavy.


2020 ◽  
Vol 802 ◽  
pp. 135190
Author(s):  
Eung Jin Chun ◽  
Tanmoy Mondal

Author(s):  
T. Biekötter ◽  
M. Chakraborti ◽  
S. Heinemeyer

AbstractWe discuss a $$\sim 3\,\sigma $$∼3σ signal (local) in the light Higgs-boson search in the diphoton decay mode at $$\sim 96 \,\, \mathrm {GeV}$$∼96GeV as reported by CMS, together with a $$\sim 2\,\sigma $$∼2σ excess (local) in the $$b {{\bar{b}}}$$bb¯ final state at LEP in the same mass range. We interpret this possible signal as a Higgs boson in the 2 Higgs Doublet Model with an additional real Higgs singlet (N2HDM). We find that the lightest Higgs boson of the N2HDM can perfectly fit both excesses simultaneously, while the second lightest state is in full agreement with the Higgs-boson measurements at $$125 \,\, \mathrm {GeV}$$125GeV, and the full Higgs-boson sector is in agreement with all Higgs exclusion bounds from LEP, the Tevatron and the LHC as well as other theoretical and experimental constraints. We show that only the N2HDM type II and IV can fit both the LEP excess and the CMS excess with a large ggF production component at $$\sim 96 \,\, \mathrm {GeV}$$∼96GeV. We derive bounds on the N2HDM Higgs sector from a fit to both excesses and describe how this signal can be further analyzed at the LHC and at future $$e^+e^-$$e+e- colliders, such as the ILC.


2019 ◽  
Vol 79 (11) ◽  
Author(s):  
Florian Domingo ◽  
Sebastian Paßehr

Abstract Extensions of the standard model often come with additional, possibly electroweakly charged Higgs states, the prototypal example being the Two-Higgs-Doublet Model. While collider phenomenology does not exclude the possibility for some of these new scalar fields to be light, it is relatively natural to consider masses in the multi-TeV range, in which case the only remaining light Higgs boson automatically receives SM-like properties. The appearance of a hierarchy between the new-physics states and the electroweak scale then leads to sizable electroweak corrections, e. g. in the decays of the heavy Higgs bosons, which are dominated by effects of infrared type, namely Sudakov logarithms. Such radiative contributions obviously affect the two-body decays, but should also be paired with the radiation of electroweak gauge bosons (or lighter Higgs bosons) for a consistent picture at the one-loop order. Resummation of the leading terms is also relatively easy to achieve. We re-visit these questions in the specific case of the fermionic decays of heavy Higgs particles in the Next-to-Minimal Supersymmetric Standard Model, in particular pointing out the consequences of the three-body final states for the branching ratios of the heavy scalars.


2018 ◽  
Vol 98 (1) ◽  
Author(s):  
Oleksii Matsedonskyi ◽  
Marc Montull

Sign in / Sign up

Export Citation Format

Share Document