scholarly journals How robust is the indistinguishability between quantum fluctuation seen from noninertial frame and real thermal bath

2019 ◽  
Vol 99 (4) ◽  
Author(s):  
Chandramouli Chowdhury ◽  
Susmita Das ◽  
Surojit Dalui ◽  
Bibhas Ranjan Majhi
2019 ◽  
Author(s):  
Riccardo Spezia ◽  
Hichem Dammak

<div> <div> <div> <p>In the present work we have investigated the possibility of using the Quantum Thermal Bath (QTB) method in molecular simulations of unimolecular dissociation processes. Notably, QTB is aimed in introducing quantum nuclear effects with a com- putational time which is basically the same as in newtonian simulations. At this end we have considered the model fragmentation of CH4 for which an analytical function is present in the literature. Moreover, based on the same model a microcanonical algorithm which monitor zero-point energy of products, and eventually modifies tra- jectories, was recently proposed. We have thus compared classical and quantum rate constant with these different models. QTB seems to correctly reproduce some quantum features, in particular the difference between classical and quantum activation energies, making it a promising method to study unimolecular fragmentation of much complex systems with molecular simulations. The role of QTB thermostat on rotational degrees of freedom is also analyzed and discussed. </p> </div> </div> </div>


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Paul Frederik Depta ◽  
Andreas Halsch ◽  
Janine Hütig ◽  
Sebastian Mendizabal ◽  
Owe Philipsen

Abstract Thermal leptogenesis, in the framework of the standard model with three additional heavy Majorana neutrinos, provides an attractive scenario to explain the observed baryon asymmetry in the universe. It is based on the out-of-equilibrium decay of Majorana neutrinos in a thermal bath of standard model particles, which in a fully quantum field theoretical formalism is obtained by solving Kadanoff-Baym equations. So far, the leading two-loop contributions from leptons and Higgs particles are included, but not yet gauge corrections. These enter at three-loop level but, in certain kinematical regimes, require a resummation to infinite loop order for a result to leading order in the gauge coupling. In this work, we apply such a resummation to the calculation of the lepton number density. The full result for the simplest “vanilla leptogenesis” scenario is by $$ \mathcal{O} $$ O (1) increased compared to that of quantum Boltzmann equations, and for the first time permits an estimate of all theoretical uncertainties. This step completes the quantum theory of leptogenesis and forms the basis for quantitative evaluations, as well as extensions to other scenarios.


2021 ◽  
Vol 103 (20) ◽  
Author(s):  
Mark Steger ◽  
Ryo Hanai ◽  
Alexander Orson Edelman ◽  
Peter B. Littlewood ◽  
David W. Snoke ◽  
...  

2020 ◽  
Vol 80 (8) ◽  
Author(s):  
Samim Akhtar ◽  
Sayantan Choudhury ◽  
Satyaki Chowdhury ◽  
Debopam Goswami ◽  
Sudhakar Panda ◽  
...  

Abstract In this work, our prime objective is to study non-locality and long range effect of two body correlation using quantum entanglement from various information theoretic measure in the static patch of de Sitter space using a two body Open Quantum System (OQS). The OQS is described by a system of two entangled atoms, surrounded by a thermal bath, which is modelled by a massless probe scalar field. Firstly, we partially trace over the bath field and construct the Gorini Kossakowski Sudarshan Lindblad (GSKL) master equation, which describes the time evolution of the reduced subsystem density matrix. This GSKL master equation is characterized by two components, these are-Spin chain interaction Hamiltonian and the Lindbladian. To fix the form of both of them, we compute the Wightman functions for probe massless scalar field. Using this result alongwith the large time equilibrium behaviour we obtain the analytical solution for reduced density matrix. Further using this solution we evaluate various entanglement measures, namely Von-Neumann entropy, R$$e'$$e′nyi entropy, logarithmic negativity, entanglement of formation, concurrence and quantum discord for the two atomic subsystem on the static patch of De-Sitter space. Finally, we have studied violation of Bell-CHSH inequality, which is the key ingredient to study non-locality in primordial cosmology.


2000 ◽  
Vol 62 (13) ◽  
pp. 8675-8678 ◽  
Author(s):  
D. V. Livanov ◽  
G. Savona ◽  
A. A. Varlamov
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document