scholarly journals Gliding filament system giving both global orientational order and clusters in collective motion

2020 ◽  
Vol 101 (3) ◽  
Author(s):  
Sakurako Tanida ◽  
Ken'ya Furuta ◽  
Kaori Nishikawa ◽  
Tetsuya Hiraiwa ◽  
Hiroaki Kojima ◽  
...  
2020 ◽  
Vol 11 (1) ◽  
pp. 189-212 ◽  
Author(s):  
Hugues Chaté

Active matter physics is about systems in which energy is dissipated at some local level to produce work. This is a generic situation, particularly in the living world but not only. What is at stake is the understanding of the fascinating, sometimes counterintuitive, emerging phenomena observed, from collective motion in animal groups to in vitro dynamical self-organization of motor proteins and biofilaments. Dry aligning dilute active matter (DADAM) is a corner of the multidimensional, fast-growing domain of active matter that has both historical and theoretical importance for the entire field. This restrictive setting only involves self-propulsion/activity, alignment, and noise, yet unexpected collective properties can emerge from it. This review provides a personal but synthetic and coherent overview of DADAM, focusing on the collective-level phenomenology of simple active particle models representing basic classes of systems and on the solutions of the continuous hydrodynamic theories that can be derived from them. The obvious fact that orientational order is advected by the aligning active particles at play is shown to be at the root of the most striking properties of DADAM systems: ( a) direct transitions to orientational order are not observed; ( b) instead generic phase separation occurs with a coexistence phase involving inhomogeneous nonlinear structures; ( c) orientational order, which can be long range even in two dimensions, is accompanied by long-range correlations and anomalous fluctuations; ( d) defects are not point-like, topologically bound objects.


2019 ◽  
Vol 133 (2) ◽  
pp. 143-155 ◽  
Author(s):  
Vicenç Quera ◽  
Elisabet Gimeno ◽  
Francesc S. Beltran ◽  
Ruth Dolado

1993 ◽  
Vol 3 (8) ◽  
pp. 1873-1888 ◽  
Author(s):  
M. Maret ◽  
F. Lançon ◽  
L. Billard

1978 ◽  
Vol 39 (C6) ◽  
pp. C6-488-C6-489 ◽  
Author(s):  
C. J. Pethick ◽  
H. Smith
Keyword(s):  

2020 ◽  
Author(s):  
Jiawei Peng ◽  
Yu Xie ◽  
Deping Hu ◽  
Zhenggang Lan

The system-plus-bath model is an important tool to understand nonadiabatic dynamics for large molecular systems. The understanding of the collective motion of a huge number of bath modes is essential to reveal their key roles in the overall dynamics. We apply the principal component analysis (PCA) to investigate the bath motion based on the massive data generated from the MM-SQC (symmetrical quasi-classical dynamics method based on the Meyer-Miller mapping Hamiltonian) nonadiabatic dynamics of the excited-state energy transfer dynamics of Frenkel-exciton model. The PCA method clearly clarifies that two types of bath modes, which either display the strong vibronic couplings or have the frequencies close to electronic transition, are very important to the nonadiabatic dynamics. These observations are fully consistent with the physical insights. This conclusion is obtained purely based on the PCA understanding of the trajectory data, without the large involvement of pre-defined physical knowledge. The results show that the PCA approach, one of the simplest unsupervised machine learning methods, is very powerful to analyze the complicated nonadiabatic dynamics in condensed phase involving many degrees of freedom.


2008 ◽  
Vol 17 (supp01) ◽  
pp. 304-317
Author(s):  
Y. M. ZHAO

In this paper we review regularities of low-lying states for many-body systems, in particular, atomic nuclei, under random interactions. We shall discuss the famous problem of spin zero ground state dominance, positive parity dominance, collective motion, odd-even staggering, average energies, etc., in the presence of random interactions.


Sign in / Sign up

Export Citation Format

Share Document