Annual Review of Condensed Matter Physics
Latest Publications


TOTAL DOCUMENTS

232
(FIVE YEARS 71)

H-INDEX

70
(FIVE YEARS 18)

Published By Annual Reviews

1947-5462, 1947-5454

Author(s):  
Eylon Persky ◽  
Ilya Sochnikov ◽  
Beena Kalisky

Electronic correlations give rise to fascinating macroscopic phenomena such as superconductivity, magnetism, and topological phases of matter. Although these phenomena manifest themselves macroscopically, fully understanding the underlying microscopic mechanisms often requires probing on multiple length scales. Spatial modulations on the mesoscopic scale are especially challenging to probe, owing to the limited range of suitable experimental techniques. Here, we review recent progress in scanning superconducting quantum interference device (SQUID) microscopy. We demonstrate how scanning SQUID combines unmatched magnetic field sensitivity and highly versatile designs, by surveying discoveries in unconventional superconductivity, exotic magnetism, topological states, and more. Finally, we discuss how SQUID microscopy can be further developed to answer the increasing demand for imaging new quantum materials. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Philippe Ghosez ◽  
Javier Junquera

Taking a historical perspective, we provide a brief overview of the first-principles modeling of ferroelectric perovskite oxides over the past 30 years. We emphasize how the work done by a relatively small community on the fundamental understanding of ferroelectricity and related phenomena has been at the origin of consecutive theoretical breakthroughs, with an impact going often well beyond the limit of the ferroelectric community. In this context, we first review key theoretical advances such as the modern theory of polarization, the computation of functional properties as energy derivatives, the explicit treatment of finite fields, or the advent of second-principles methods to extend the length and timescale of the simulations. We then discuss how these have revolutionized our understanding of ferroelectricity and related phenomena in this technologically important class of compounds. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Nicholas B. Rego ◽  
Amish J. Patel

The aversion of hydrophobic solutes for water drives diverse interactions and assemblies across materials science, biology, and beyond. Here, we review the theoretical, computational, and experimental developments that underpin a contemporary understanding of hydrophobic effects. We discuss how an understanding of density fluctuations in bulk water can shed light on the fundamental differences in the hydration of molecular and macroscopic solutes; these differences, in turn, explain why hydrophobic interactions become stronger upon increasing temperature. We also illustrate the sensitive dependence of surface hydrophobicity on the chemical and topographical patterns the surface displays, which makes the use of approximate approaches for estimating hydrophobicity particularly challenging. Importantly, the hydrophobicity of complex surfaces, such as those of proteins, which display nanoscale heterogeneity, can nevertheless be characterized using interfacial water density fluctuations; such a characterization also informs protein regions that mediate their interactions. Finally, we build upon an understanding of hydrophobic hydration and the ability to characterize hydrophobicity to inform the context-dependent thermodynamic forces that drive hydrophobic interactions and the desolvation barriers that impede them. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Daniel P. Arovas ◽  
Erez Berg ◽  
Steven A. Kivelson ◽  
Srinivas Raghu

The repulsive Hubbard model has been immensely useful in understanding strongly correlated electron systems and serves as the paradigmatic model of the field. Despite its simplicity, it exhibits a strikingly rich phenomenology reminiscent of that observed in quantum materials. Nevertheless, much of its phase diagram remains controversial. Here, we review a subset of what is known about the Hubbard model based on exact results or controlled approximate solutions in various limits, for which there is a suitable small parameter. Our primary focus is on the ground state properties of the system on various lattices in two spatial dimensions, although both lower and higher dimensions are discussed as well. Finally, we highlight some of the important outstanding open questions. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Étienne Fodor ◽  
Robert L. Jack ◽  
Michael E. Cates

Active systems evade the rules of equilibrium thermodynamics by constantly dissipating energy at the level of their microscopic components. This energy flux stems from the conversion of a fuel, present in the environment, into sustained individual motion. It can lead to collective effects without any equilibrium equivalent, some of which can be rationalized by using equilibrium tools to recapitulate nonequilibrium transitions. An important challenge is then to delineate systematically to what extent the character of these active transitions is genuinely distinct from equilibrium analogs. We review recent works that use stochastic thermodynamics tools to identify, for active systems, a measure of irreversibility comprising a coarse-grained or informatic entropy production. We describe how this relates to the underlying energy dissipation or thermodynamic entropy production, and how it is influenced by collective behavior. Then, we review the possibility of constructing thermodynamic ensembles out-of-equilibrium, where trajectories are biased toward atypical values of nonequilibrium observables. We show that this is a generic route to discovering unexpected phase transitions in active matter systems, which can also inform their design. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Paul A. McClarty

At sufficiently low temperatures, magnetic materials often enter correlated phases hosting collective, coherent magnetic excitations such as magnons or triplons. Drawing on the enormous progress on topological materials of the past few years, recent research has led to new insights into the geometry and topology of these magnetic excitations. Berry phases associated with magnetic dynamics can lead to observable consequences in heat and spin transport, whereas analogs of topological insulators and semimetals can arise within magnon band structures from natural magnetic couplings. Magnetic excitations offer a platform to explore the interplay of magnetic symmetries and topology, to drive topological transitions using magnetic fields; examine the effects of interactions on topological bands; and generate topologically protected spin currents at interfaces. In this review, we survey progress on all these topics, highlighting aspects of topological matter that are unique to magnon systems and the avenues yet to be fully investigated. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Gautam Reddy ◽  
Venkatesh N. Murthy ◽  
Massimo Vergassola

Fluid turbulence is a double-edged sword for the navigation of macroscopic animals, such as birds, insects, and rodents. On one hand, turbulence enables pheromone communication among mates and the possibility of locating food by their odors from long distances. Molecular diffusion would indeed be unable to spread odors over relevant distances in natural conditions. On the other hand, turbulent flows are hard to predict, and learning effective maneuvers to navigate them is challenging, as we discuss in this review. We first provide a summary of the olfactory organs that sense airborne or surface-bound odors, as well as the computational tasks that animals face when extracting information useful for navigation from an olfactory signal. A compendium of the dynamics of turbulent transport emphasizes those aspects that directly impact animals’ behavior. The state of the art on navigational strategies is discussed, followed by a concluding section dedicated to future challenges in the field. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Satoru Nakatsuji ◽  
Ryotaro Arita

Macroscopic responses of magnets are often governed by magnetization and, thus, have been restricted to ferromagnets. However, such responses are strikingly large in the newly developed topological magnets, breaking the conventional scaling with magnetization. Taking the recently discovered antiferromagnetic (AF) Weyl semimetals as a prime example, we highlight the two central ingredients driving the significant macroscopic responses: the Berry curvature enhanced because of nontrivial band topology in momentum space, and the cluster magnetic multipoles in real space. The combination of large Berry curvature and multipole enables large macroscopic responses such as the anomalous Hall and Nernst effects, the magneto-optical effect, and the novel magnetic spin Hall effect in antiferromagnets with negligible net magnetization, but also allows us to manipulate these effects by electrical means. Furthermore, nodal-point and nodal-line semimetallic states in ferromagnets may provide the strongly enhanced Berry curvature near the Fermi energy, leading to large responses beyond the conventional magnetization scaling. These significant properties and functions of the topological magnets lay the foundation for future technological development such as spintronics and thermoelectric technology. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Ricard Alert ◽  
Jaume Casademunt ◽  
Jean-François Joanny

Active fluids exhibit spontaneous flows with complex spatiotemporal structure, which have been observed in bacterial suspensions, sperm cells, cytoskeletal suspensions, self-propelled colloids, and cell tissues. Despite occurring in the absence of inertia, chaotic active flows are reminiscent of inertial turbulence, and hence they are known as active turbulence. Here, we survey the field, providing a unified perspective over different classes of active turbulence. To this end, we divide our review in sections for systems with either polar or nematic order, and with or without momentum conservation (wet or dry). Comparing to inertial turbulence, we highlight the emergence of power-law scaling with either universal or nonuniversal exponents. We also contrast scenarios for the transition from steady to chaotic flows, and we discuss the absence of energy cascades. We link this feature to both the existence of intrinsic length scales and the self-organized nature of energy injection in active turbulence, which are fundamental differences with inertial turbulence. We close by outlining the emerging picture, remaining challenges, and future directions. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Takaaki Dohi ◽  
Robert. M. Reeve ◽  
Mathias Kläui

In condensed matter physics, magnetic skyrmions, topologically stabilized magnetic solitons, have been discovered in various materials systems, which has intrigued the community in terms of not only fundamental physics but also with respect to engineering applications. In particular, skyrmions in thin films are easily manipulable by electrical means even at room temperature. Concomitantly, a variety of possible applications have been proposed and proof-of-concept devices have been demonstrated. Recently, the field of skyrmion-based electronics has been referred to as skyrmionics and this field has been rapidly growing and extended in multiple directions. This review provides recent progress for skyrmion research in thin film systems and we discuss promising new directions, which will further invigorate the field. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document