Phase-transition study of a one-dimensional probabilistic site-exchange cellular automaton

1993 ◽  
Vol 48 (4) ◽  
pp. 3168-3171 ◽  
Author(s):  
Géza Ódor ◽  
Nino Boccara ◽  
György Szabó
Fractals ◽  
1993 ◽  
Vol 01 (04) ◽  
pp. 860-866 ◽  
Author(s):  
MISAKO TAKAYASU ◽  
HIDEKI TAKAYASU

One-dimensional traffic flow is simulated by a cellular-automaton-type discrete model. As we increase the car density, the model shows a phase transition between a jam phase and a non-jam phase. By adding random perturbations we found a 1/f power spectrum in the jam phase, whereas a white noise is observed in the non-jam phase.


1994 ◽  
Vol 05 (03) ◽  
pp. 537-545 ◽  
Author(s):  
N. BOCCARA ◽  
J. NASSER ◽  
M. ROGER

We study the critical behavior of a probabilistic automata network whose local rule consists of two subrules. The first one, applied synchronously, is a probabilistic one-dimensional range-one cellular automaton rule. The second, applied sequentially, exchanges the values of a pair of sites. According to whether the two sites are first-neighbors or not, the exchange is said to be local or nonlocal. The evolution of the system depends upon two parameters, the probability p characterizing the probabilistic cellular automaton, and the degree of mixing m resulting from the exchange process. Depending upon the values of these parameters, the system exhibits a bifurcation similar to a second order phase transition characterized by a nonnegative order parameter, whose role is played by the stationary density of occupied sites. When m is very large, the correlations created by the application of the probabilistic cellular automaton rule are destroyed, and, as expected, the behavior of the system is then correctly predicted by a mean-field-type approximation. According to whether the exchange of the site values is local or nonlocal, the critical behavior is qualitatively different as m varies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Milad Jangjan ◽  
Mir Vahid Hosseini

AbstractWe theoretically report the finding of a new kind of topological phase transition between a normal insulator and a topological metal state where the closing-reopening of bandgap is accompanied by passing the Fermi level through an additional band. The resulting nontrivial topological metal phase is characterized by stable zero-energy localized edge states that exist within the full gapless bulk states. Such states living on a quasi-one-dimensional system with three sublattices per unit cell are protected by hidden inversion symmetry. While other required symmetries such as chiral, particle-hole, or full inversion symmetry are absent in the system.


Sign in / Sign up

Export Citation Format

Share Document