scholarly journals Computer simulations of domain growth and phase separation in two-dimensional binary immiscible fluids using dissipative particle dynamics

1996 ◽  
Vol 54 (5) ◽  
pp. 5134-5141 ◽  
Author(s):  
Peter V. Coveney ◽  
Keir E. Novik
1997 ◽  
Vol 08 (04) ◽  
pp. 909-918 ◽  
Author(s):  
Keir E. Novik ◽  
Peter V. Coveney

We investigate the domain growth and phase separation of two-dimensional binary immiscible fluid systems using dissipative particle dynamics. Our results are compared with similar simulations using other techniques, and we conclude that dissipative particle dynamics is a promising method for simulating these systems.


2000 ◽  
Vol 11 (01) ◽  
pp. 1-25 ◽  
Author(s):  
WITOLD DZWINEL ◽  
DAVID A. YUEN

We investigate the role played by conservative forces in dissipative particle dynamics (DPD) simulation of single-component and binary fluids. We employ equations from kinetic theory for matching the coefficients of DPD interparticle force to the macroscopic properties of fluid such as: density, temperature, diffusion coefficient, kinematic viscosity and sound velocity. The sound velocity c is coupled with scaling factor π1 of conservative component of the DPD collision operator. Its value sets up an upper limit on the mass S of a single particle in DPD fluid. The Kirkwood–Alder fluid–solid transition is observed for a sufficiently large S. We emphasize the role of the scaling factor π12 for particles of different types in simulating phase separation in binary fluids. The temporal growth of average domain size R(t) in the phase separation process depends on the value of immiscibility coefficient Δ = π12 - π1. For small immiscibility, R (t) ∝ tβ, where β ≈ 1/2 for R (t) < R H and β ≈ 2/3 for R (t) > R H , R H is the hydrodynamic length. Finally, both phases separate out completely. For larger immiscibility, R(t) increases exponentially at the beginning of simulation, while finally the domain growth process becomes marginal. We also observe the creation of emulsion-like structures. This effect results from an increase of the surface tension on the two-phase interface along with increasing immiscibility.


Soft Matter ◽  
2021 ◽  
Author(s):  
Claudio Maggi ◽  
Matteo Paoluzzi ◽  
Andrea Crisanti ◽  
Emanuela Zaccarelli ◽  
Nicoletta Gnan

We perform large-scale computer simulations of an off-lattice two-dimensional model of active particles undergoing a motility-induced phase separation (MIPS) to investigate the systems critical behaviour close to the critical point...


2014 ◽  
Vol 13 (1) ◽  
pp. 65
Author(s):  
A. A. Horta ◽  
L. O. S. Ferreira ◽  
E. L. Martinez ◽  
R. Maciel Filho

Multiphase fluid motion in microchannnels involves complicated fluid dynamics and is fundamentally important to diverse practical engineering applications. Among several applications, the alcohol-oil mixture is particularly important due to its application for biodiesel production. In this work, the mixture of immiscible fluids alcohol-oil in a square T-shaped microchannel was investigated using the Dissipative Particle Dynamics (DPD) method available in the HOOMD simulator, which runs on a single graphic processing unit (GPU). The immiscible fluids were achieved by increasing the repulsive force between species. The fluid properties and hydrodynamic behavior were discussed in function of model parameters. The simulation results agree with data published in the literature showing that the DPD is appropriate for simulation of mass transport on complex geometries in microscale on a single GPU.


Author(s):  
Waqas Waheed ◽  
Anas Alazzam ◽  
Ashraf N. Al Khateeb ◽  
Eiyad Abu Nada

In this paper, a two-dimensional Dissipative Particle Dynamics (DPD) technique to simulate the poiseuille flow in a microchannel is developed using an in-house code. The calculated Reynolds number is reduced via adjusting the DPD parameters. The obtained velocity profile is compared with the analytical results and a good agreement is found. The drag force and the drag coefficient on a stationary cylinder exerted by the fluid particles are obtained using the developed DPD code. The calculated drag coefficient exhibits a close match with already published data in the literature.


2001 ◽  
Vol 12 (01) ◽  
pp. 91-118 ◽  
Author(s):  
WITOLD DZWINEL ◽  
DAVID A. YUEN

In the mesoscale, mixing dynamics involving immiscible fluids is truly an outstanding problem in many fields, ranging from biology to geology, because of the multiscale nature which causes severe difficulties for conventional methods using partial differential equations. The existing macroscopic models incorporating the two microstructural mechanisms of breakup and coalescence do not have the necessary physical ingredients for feedback dynamics. We demonstrate here that the approach of dissipative particle dynamics (DPD) does include the feedback mechanism and thus can yield much deeper insight into the nature of immiscible mixing. We have employed the DPD method for simulating numerically the highly nonlinear aspects of the Rayleigh–Taylor (R–T) instability developed over the mesoscale for viscous, immiscible, elastically compressible fluids. In the initial stages, we encounter the spontaneous, vertical oscillations in the incipient period of mixing. The long-term dynamics are controlled by the initial breakup and the subsequent coalescence of the microstructures and the termination of the chaotic stage in the development of the R–T instability. In the regime with high capillary number, breakup plays a dominant role in the mixing whereas in the low capillary number regime, the flow decelerates and coalescence takes over and causes a more rapid turnover. The speed of mixing and the turnover depend on the immiscibility factor which results from microscopic interactions between the binary fluid components. Both the speed of mixing and the overturn dynamics depend not only on the mascrocopic fluid properties but also on the breakup and coalescent patterns, and most importantly on the nonlinear interactions between the microstructural dynamics and the large-scale flow.


Sign in / Sign up

Export Citation Format

Share Document