scholarly journals Low-lying excited states of light-harvesting system II in purple bacteria

2004 ◽  
Vol 69 (3) ◽  
Author(s):  
Yang Zhao ◽  
Man-Fai Ng ◽  
GuanHua Chen
2003 ◽  
Vol 107 (35) ◽  
pp. 9589-9600 ◽  
Author(s):  
Man-Fai Ng ◽  
Yang Zhao ◽  
Guan-Hua Chen

2019 ◽  
Vol 10 (42) ◽  
pp. 9650-9662 ◽  
Author(s):  
Felipe Cardoso Ramos ◽  
Michele Nottoli ◽  
Lorenzo Cupellini ◽  
Benedetta Mennucci

The spectral tuning of LH2 antenna complexes arises from H-bonding, acetyl torsion, and inter-chromophore couplings.


2015 ◽  
Vol 17 (46) ◽  
pp. 30805-30816 ◽  
Author(s):  
Cathal Smyth ◽  
Daniel G. Oblinsky ◽  
Gregory D. Scholes

Delocalization of a model light-harvesting complex is investigated using multipartite measures inspired by quantum information science.


2018 ◽  
Vol 9 (23) ◽  
pp. 6892-6899 ◽  
Author(s):  
Lorenzo Cupellini ◽  
Stefano Caprasecca ◽  
Ciro A. Guido ◽  
Frank Müh ◽  
Thomas Renger ◽  
...  

2020 ◽  
Vol 17 (164) ◽  
pp. 20190736
Author(s):  
Elliot J. Taffet ◽  
Francesca Fassioli ◽  
Zi S. D. Toa ◽  
David Beljonne ◽  
Gregory D. Scholes

It has long been recognized that visible light harvesting in Peridinin–Chlorophyll–Protein is driven by the interplay between the bright (S 2 ) and dark (S 1 ) states of peridinin (carotenoid), along with the lowest-lying bright (Q y ) and dark (Q x ) states of chlorophyll- a . Here, we analyse a chromophore cluster in the crystal structure of Peridinin–Chlorophyll–Protein, in particular, a peridinin–peridinin and a peridinin–chlorophyll- a dimer, and present quantum chemical evidence for excited states that exist beyond the confines of single peridinin and chlorophyll chromophores. These dark multichromophoric states, emanating from the intermolecular packing native to Peridinin–Chlorophyll–Protein, include a correlated triplet pair comprising neighbouring peridinin excitations and a charge-transfer interaction between peridinin and the adjacent chlorophyll- a . We surmise that such dark multichromophoric states may explain two spectral mysteries in light-harvesting pigments: the sub-200-fs singlet fission observed in carotenoid aggregates, and the sub-200-fs chlorophyll- a hole generation in Peridinin–Chlorophyll–Protein.


Sign in / Sign up

Export Citation Format

Share Document