light harvesting antenna
Recently Published Documents


TOTAL DOCUMENTS

335
(FIVE YEARS 53)

H-INDEX

52
(FIVE YEARS 5)

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Takuo Minato ◽  
Takamasa Teramoto ◽  
Naruhiko Adachi ◽  
Nguyen Khac Hung ◽  
Kaho Yamada ◽  
...  

AbstractC-phycocyanin (CPC), a blue pigment protein, is an indispensable component of giant phycobilisomes, which are light-harvesting antenna complexes in cyanobacteria that transfer energy efficiently to photosystems I and II. X-ray crystallographic and electron microscopy (EM) analyses have revealed the structure of CPC to be a closed toroidal hexamer by assembling two trimers. In this study, the structural characterization of non-conventional octameric CPC is reported for the first time. Analyses of the crystal and cryogenic EM structures of the native CPC from filamentous thermophilic cyanobacterium Thermoleptolyngbya sp. O–77 unexpectedly illustrated the coexistence of conventional hexamer and novel octamer. In addition, an unusual dimeric state, observed via analytical ultracentrifugation, was postulated to be a key intermediate structure in the assemble of the previously unobserved octamer. These observations provide new insights into the assembly processes of CPCs and the mechanism of energy transfer in the light-harvesting complexes.


Author(s):  
Janneke Ravensbergen ◽  
Smitha Pillai ◽  
Dalvin D. Méndez-Hernández ◽  
Raoul N. Frese ◽  
Rienk van Grondelle ◽  
...  

2021 ◽  
Vol 12 (39) ◽  
pp. 9626-9633
Author(s):  
Anthi Chrysafoudi ◽  
Sayan Maity ◽  
Ulrich Kleinekathöfer ◽  
Vangelis Daskalakis

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Meijing Li ◽  
Jianfei Ma ◽  
Xueming Li ◽  
Sen-Fang Sui

Phycobilisome (PBS) is the main light-harvesting antenna in cyanobacteria and red algae. How PBS transfers the light energy to photosystem II (PSII) remains to be elucidated. Here we report the in situ structure of the PBS–PSII supercomplex from Porphyridium purpureum UTEX 2757 using cryo-electron tomography and subtomogram averaging. Our work reveals the organized network of hemiellipsoidal PBS with PSII on the thylakoid membrane in the native cellular environment. In the PBS–PSII supercomplex, each PBS interacts with six PSII monomers, of which four directly bind to the PBS, and two bind indirectly. Additional three ‘connector’ proteins also contribute to the connections between PBS and PSIIs. Two PsbO subunits from adjacent PSII dimers bind with each other, which may promote stabilization of the PBS–PSII supercomplex. By analyzing the interaction interface between PBS and PSII, we reveal that αLCM and ApcD connect with CP43 of PSII monomer and that αLCM also interacts with CP47' of the neighboring PSII monomer, suggesting the multiple light energy delivery pathways. The in situ structures illustrate the coupling pattern of PBS and PSII and the arrangement of the PBS–PSII supercomplex on the thylakoid, providing the near-native 3D structural information of the various energy transfer from PBS to PSII.


2021 ◽  
Author(s):  
Vasco Giovagnetti ◽  
Marianne Jaubert ◽  
Mahendra K Shukla ◽  
Petra Ungerer ◽  
Jean-Pierre Bouly ◽  
...  

Abstract Light harvesting is regulated by a process triggered by the acidification of the thylakoid lumen, known as nonphotochemical “energy-dependent quenching” (qE). In diatoms, qE is controlled by the light-harvesting complex (LHC) protein LHCX1, while the LHC stress-related (LHCSR) and photosystem II subunit S proteins are essential for green algae and plants, respectively. Here, we report a biochemical and molecular characterization of LHCX1 to investigate its role in qE. We found that, when grown under intermittent light, Phaeodactylum tricornutum forms very large qE, due to LHCX1 constitutive upregulation. This “super qE” is abolished in LHCX1 knockout mutants. Biochemical and spectroscopic analyses of LHCX1 reveal that this protein might differ in the character of binding pigments relative to the major pool of light-harvesting antenna proteins. The possibility of transient pigment binding or not binding pigments at all is discussed. Targeted mutagenesis of putative protonatable residues (D95 and E205) in transgenic P. tricornutum lines does not alter qE capacity, showing that they are not involved in sensing lumen pH, differently from residues conserved in LHCSR3. Our results suggest functional divergence between LHCX1 and LHCSR3 in qE modulation. We propose that LHCX1 evolved independently to facilitate dynamic tracking of light fluctuations in turbulent waters. The evolution of LHCX(-like) proteins in organisms with secondary red plastids, such as diatoms, might have conferred a selective advantage in the control of dynamic photoprotection, ultimately resulting in their ecological success.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mingyuan Xie ◽  
Wenjun Li ◽  
Hanzhi Lin ◽  
Xiaoxiao Wang ◽  
Jianwen Dong ◽  
...  

AbstractPhycobilisomes (PBSs) are the largest light-harvesting antenna in red algae, and feature high efficiency and rate of energy transfer even in a dim environment. To understand the influence of light on the energy transfer in PBSs, two red algae Griffithsia pacifica and Porphyridium purpureum living in different light environment were selected for this research. The energy transfer dynamics in PBSs of the two red algae were studied in time-resolved fluorescence spectroscopy in sub-picosecond resolution. The energy transfer pathways and the related transfer rates were uncovered by deconvolution of the fluorescence decay curve. Four time-components, i.e., 8 ps, 94 ps, 970 ps, and 2288 ps were recognized in the energy transfer in PBSs of G. pacifica, and 10 ps, 74 ps, 817 ps and 1292 ps in P. purpureum. In addition, comparison in energy transfer dynamics between the two red algae revealed that the energy transfer was clearly affected by lighting environment. The findings help us to understand the energy transfer mechanisms of red algae for adaptation to a natural low light environment.


2021 ◽  
Author(s):  
Mimi Broderson ◽  
Krishna K. Niyogi ◽  
Masakazu Iwai

Photoprotection mechanisms are ubiquitous among photosynthetic organisms. The photoprotection capacity of the green alga Chlamydomonas reinhardtii is correlated with protein levels of stress-related light-harvesting complex (LHCSR) proteins, which are strongly induced by high light (HL). However, the dynamic response of overall thylakoid structure during acclimation to growth in HL has not been characterized. Here, we combined live-cell super-resolution microscopy and analytical membrane subfractionation to investigate macroscale structural changes of thylakoid membranes during HL acclimation in C. reinhardtii. Subdiffraction-resolution bioimaging revealed that overall thylakoid structures became thinned and shrunken during HL acclimation. The stromal space around the pyrenoid also became enlarged. Analytical density-dependent membrane fractionation indicated that the structural changes were partly a consequence of membrane unstacking. The analysis of both an LHCSR loss-of- function mutant, npq4 lhcsr1, and a regulatory mutant that over-expresses LHCSR, spa1-1, showed that structural changes occurred independently of LHCSR protein levels, demonstrating that LHCSR was neither necessary nor sufficient to induce the thylakoid structural changes associated with HL acclimation. In contrast, stt7-9, a mutant lacking a kinase of major light-harvesting antenna proteins, had a distinct thylakoid structural response during HL acclimation relative to all other lines tested. Thus, while LHCSR and the antenna protein phosphorylation are core features of HL acclimation, it appears that only the latter acts as a determinant for thylakoid structural rearrangements. These results indicate that two independent mechanisms occur simultaneously to cope with HL conditions. Possible scenarios for HL-induced thylakoid structural changes are discussed.


Marine Drugs ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. 336
Author(s):  
Ni Wu ◽  
Mengmeng Tong ◽  
Siyu Gou ◽  
Weiji Zeng ◽  
Zhuoyun Xu ◽  
...  

Chattonella species, C. marina and C. ovata, are harmful raphidophycean flagellates known to have hemolytic effects on many marine organisms and resulting in massive ecological damage worldwide. However, knowledge of the toxigenic mechanism of these ichthyotoxic flagellates is still limited. Light was reported to be responsible for the hemolytic activity (HA) of Chattonella species. Therefore, the response of photoprotective, photosynthetic accessory pigments, the photosystem II (PSII) electron transport chain, as well as HA were investigated in non-axenic C. marina and C. ovata cultures under variable environmental conditions (light, iron and addition of photosynthetic inhibitors). HA and hydrogen peroxide (H2O2) were quantified using erythrocytes and pHPA assay. Results confirmed that% HA of Chattonella was initiated by light, but was not always elicited during cell division. Exponential growth of C. marina and C. ovata under the light over 100 µmol m−2 s−1 or iron-sufficient conditions elicited high hemolytic activity. Inhibitors of PSII reduced the HA of C. marina, but had no effect on C. ovata. The toxicological response indicated that HA in Chattonella was not associated with the photoprotective system, i.e., xanthophyll cycle and regulation of reactive oxygen species, nor the PSII electron transport chain, but most likely occurred during energy transport through the light-harvesting antenna pigments. A positive, highly significant relationship between HA and chlorophyll (chl) biosynthesis pigments, especially chl c2 and chl a, in both species, indicated that hemolytic toxin may be generated during electron/energy transfer through the chl c2 biosynthesis pathway.


Sign in / Sign up

Export Citation Format

Share Document