Fluid limit of nonintegrable continuous-time random walks in terms of fractional differential equations

2005 ◽  
Vol 71 (1) ◽  
Author(s):  
R. Sánchez ◽  
B. A. Carreras ◽  
B. Ph. van Milligen
Author(s):  
Marcin Magdziarz ◽  
Tomasz Zorawik

AbstractIn this paper we derive explicit formulas for the densities of Lévy walks. Our results cover both jump-first and wait-first scenarios. The obtained densities solve certain fractional differential equations involving fractional material derivative operators. In the particular case, when the stability index is rational, the densities can be represented as an integral of Meijer


Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 2078 ◽  
Author(s):  
Vasily E. Tarasov

In this article, two well-known standard models with continuous time, which are proposed by two Nobel laureates in economics, Robert M. Solow and Robert E. Lucas, are generalized. The continuous time standard models of economic growth do not account for memory effects. Mathematically, this is due to the fact that these models describe equations with derivatives of integer orders. These derivatives are determined by the properties of the function in an infinitely small neighborhood of the considered time. In this article, we proposed two non-linear models of economic growth with memory, for which equations are derived and solutions of these equations are obtained. In the differential equations of these models, instead of the derivative of integer order, fractional derivatives of non-integer order are used, which allow describing long memory with power-law fading. Exact solutions for these non-linear fractional differential equations are obtained. The purpose of this article is to study the influence of memory effects on the rate of economic growth using the proposed simple models with memory as examples. As the methods of this study, exact solutions of fractional differential equations of the proposed models are used. We prove that the effects of memory can significantly (several times) change the growth rate, when other parameters of the model are unchanged.


2021 ◽  
Vol 29 (1) ◽  
Author(s):  
E. A. Abdel-Rehim

AbstractIn this review paper, I focus on presenting the reasons of extending the partial differential equations to space-time fractional differential equations. I believe that extending any partial differential equations or any system of equations to fractional systems without giving concrete reasons has no sense. The experiments agrees with the theoretical studies on extending the first order-time derivative to time-fractional derivative. The simulations of some processes also agrees with the theory of continuous time random walks for extending the second-order space fractional derivative to the Riesz–Feller fractional operators. For this aim, I give a condense review the theory of Brownian motion, Langevin equations, diffusion processes and the continuous time random walk. Some partial differential equations that are successfully extended to space-time-fractional differential equations are also presented.


Sign in / Sign up

Export Citation Format

Share Document