scholarly journals Pseudononstationarity in the scaling exponents of finite-interval time series

2009 ◽  
Vol 79 (3) ◽  
Author(s):  
K. H. Kiyani ◽  
S. C. Chapman ◽  
N. W. Watkins
1996 ◽  
Vol 271 (4) ◽  
pp. R1078-R1084 ◽  
Author(s):  
N. Iyengar ◽  
C. K. Peng ◽  
R. Morin ◽  
A. L. Goldberger ◽  
L. A. Lipsitz

We postulated that aging is associated with disruption in the fractallike long-range correlations that characterize healthy sinus rhythm cardiac interval dynamics. Ten young (21-34 yr) and 10 elderly (68-81 yr) rigorously screened healthy subjects underwent 120 min of continuous supine resting electrocardiographic recording. We analyzed the interbeat interval time series using standard time and frequency domain statistics and using a fractal measure, detrended fluctuation analysis, to quantify long-range correlation properties. In healthy young subjects, interbeat intervals demonstrated fractal scaling, with scaling exponents (alpha) from the fluctuation analysis close to a value of 1.0. In the group of healthy elderly subjects, the interbeat interval time series had two scaling regions. Over the short range, interbeat interval fluctuations resembled a random walk process (Brownian noise, alpha = 1.5), whereas over the longer range they resembled white noise (alpha = 0.5). Short (alpha s)- and long-range (alpha 1) scaling exponents were significantly different in the elderly subjects compared with young (alpha s = 1.12 +/- 0.19 vs. 0.90 +/- 0.14, respectively, P = 0.009; alpha 1 = 0.75 +/- 0.17 vs. 0.99 +/- 0.10, respectively, P = 0.002). The crossover behavior from one scaling region to another could be modeled as a first-order autoregressive process, which closely fit the data from four elderly subjects. This implies that a single characteristic time scale may be dominating heartbeat control in these subjects. The age-related loss of fractal organization in heartbeat dynamics may reflect the degradation of integrated physiological regulatory systems and may impair an individual's ability to adapt to stress.


Author(s):  
Jiawei Yang ◽  
Gulraiz Iqbal Choudhary ◽  
Susanto Rahardja ◽  
Pasi Franti

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 9926-9934 ◽  
Author(s):  
Gulraiz Iqbal Choudhary ◽  
Wajid Aziz ◽  
Ishtiaq Rasool Khan ◽  
Susanto Rahardja ◽  
Pasi Franti

Sign in / Sign up

Export Citation Format

Share Document