horizontal visibility graph
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 30)

H-INDEX

9
(FIVE YEARS 3)

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259735
Author(s):  
Víctor Muñoz ◽  
N. Elizabeth Garcés

We study the light curves of pulsating variable stars using a complex network approach to build visibility graphs. We consider various types of variables stars (e.g., Cepheids, δ Scuti, RR Lyrae), build two types of graphs (the normal visibility graph (VG) and the horizontal visibility graph (HVG)), and calculate various metrics for the resulting networks. We find that all networks have a power-law degree distribution for the VG and an exponential distribution for the HVG, suggesting that it is a universal feature, regardless of the pulsation features. Metrics such as the average degree, the clustering coefficient and the transitivity coefficient, can distinguish between some star types. We also observe that the results are not strongly affected by the presence of observation gaps in the light curves. These findings suggest that the visibility graph algorithm may be a useful technique to study variability in stars.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5952
Author(s):  
Ramón Miralles ◽  
Guillermo Lara ◽  
Alicia Carrión ◽  
Manuel Bou-Cabo

Anthropogenic impulsive sound sources with high intensity are a threat to marine life and it is crucial to keep them under control to preserve the biodiversity of marine ecosystems. Underwater explosions are one of the representatives of these impulsive sound sources, and existing detection techniques are generally based on monitoring the pressure level as well as some frequency-related features. In this paper, we propose a complementary approach to the underwater explosion detection problem through assessing the arrow of time. The arrow of time of the pressure waves coming from underwater explosions conveys information about the complex characteristics of the nonlinear physical processes taking place as a consequence of the explosion to some extent. We present a thorough review of the characterization of arrows of time in time-series, and then provide specific details regarding their applications in passive acoustic monitoring. Visibility graph-based metrics, specifically the direct horizontal visibility graph of the instantaneous phase, have the best performance when assessing the arrow of time in real explosions compared to similar acoustic events of different kinds. The proposed technique has been validated in both simulations and real underwater explosions.


Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 470
Author(s):  
Belén Acosta-Tripailao ◽  
Denisse Pastén ◽  
Pablo S. Moya

One of the fundamental open questions in plasma physics is the role of non-thermal particles distributions in poorly collisional plasma environments, a system that is commonly found throughout the Universe, e.g., the solar wind and the Earth’s magnetosphere correspond to natural plasma physics laboratories in which turbulent phenomena can be studied. Our study perspective is born from the method of Horizontal Visibility Graph (HVG) that has been developed in the last years to analyze time series avoiding the tedium and the high computational cost that other methods offer. Here, we build a complex network based on directed HVG technique applied to magnetic field fluctuations time series obtained from Particle In Cell (PIC) simulations of a magnetized collisionless plasma to distinguish the degree distributions and calculate the Kullback–Leibler Divergence (KLD) as a measure of relative entropy of data sets produced by processes that are not in equilibrium. First, we analyze the connectivity probability distribution for the undirected version of HVG finding how the Kappa distribution for low values of κ tends to be an uncorrelated time series, while the Maxwell–Boltzmann distribution shows a correlated stochastic processes behavior. Subsequently, we investigate the degree of temporary irreversibility of magnetic fluctuations that are self-generated by the plasma, comparing the case of a thermal plasma (described by a Maxwell–Botzmann velocity distribution function) with non-thermal Kappa distributions. We have shown that the KLD associated to the HVG is able to distinguish the level of reversibility that is associated to the thermal equilibrium in the plasma, because the dissipative degree of the system increases as the value of κ parameter decreases and the distribution function departs from the Maxwell–Boltzmann equilibrium.


2021 ◽  
Vol 124 ◽  
pp. 102145
Author(s):  
Toufik Mansour ◽  
Reza Rastegar ◽  
Alexander Roitershtein

Author(s):  
Hui Li ◽  
Jianwei Liao ◽  
Xiaoyan Liu

I/O merging optimization at the block I/O layer of disk storage is widely adopted to reduce I/O response time. But it may result in certain overhead of merging judgment in the case of a large number of concurrent I/O requests accessing disk storage, and place negative effects on the response of small requests. This paper proposes a divide and conquer scheduling scheme at the block layer of I/O stack, to satisfy a large number of concurrent I/O requests with less I/O response time and ensure the fairness of each request response by decreasing the average I/O latency. First, we propose a horizontal visibility graph-based approach to cluster relevant block requests, according to their offsets (i.e., logic block numbers). Next, it carries out the optimization operation of merging consecutive block I/O requests within each cluster, as only these requests in the same cluster are most likely to be issued by a specific application. Then, we have introduced the functionality of merging judgment when performing merging optimization to effectively guarantee the average I/O response time. After that, the merged requests in the queue will be reordered on the basis of their priorities, to purposely cut down the average I/O response time. Finally, the prioritized requests are supposed to be delivered to the disk storage, for being serviced. Through a series of experiments, we show that compared to the benchmark, the newly proposed scheme can not only cut down the I/O response time by more than 18.2%, but also decrease the average I/O response time up to 71.7%.


Sign in / Sign up

Export Citation Format

Share Document