Soliton management for a variable-coefficient modified Korteweg–de Vries equation

2011 ◽  
Vol 84 (2) ◽  
Author(s):  
Zhi-Yuan Sun ◽  
Yi-Tian Gao ◽  
Ying Liu ◽  
Xin Yu
2011 ◽  
Vol 67 (2) ◽  
pp. 1023-1030 ◽  
Author(s):  
Xin Yu ◽  
Yi-Tian Gao ◽  
Zhi-Yuan Sun ◽  
Ying Liu

2020 ◽  
Vol 34 (25) ◽  
pp. 2050226 ◽  
Author(s):  
Yu-Qi Chen ◽  
Bo Tian ◽  
Qi-Xing Qu ◽  
He Li ◽  
Xue-Hui Zhao ◽  
...  

For a variable-coefficient Korteweg–de Vries equation in a lake/sea, two-layer liquid, atmospheric flow, cylindrical plasma or interactionless plasma, in this paper, we derive the bilinear Bäcklund transformation, non-isospectral Ablowitz–Kaup–Newell–Segur system and infinite conservation laws for the wave amplitude under certain constraints among the external force, dissipation, nonlinearity, dispersion and perturbation.


2016 ◽  
Vol 30 (35) ◽  
pp. 1650318 ◽  
Author(s):  
Jun Chai ◽  
Bo Tian ◽  
Xi-Yang Xie ◽  
Han-Peng Chai

Investigation is given to a forced generalized variable-coefficient Korteweg–de Vries equation for the atmospheric blocking phenomenon. Applying the double-logarithmic and rational transformations, respectively, under certain variable-coefficient constraints, we get two different types of bilinear forms: (a) Based on the first type, the bilinear Bäcklund transformation (BT) is derived, the [Formula: see text]-soliton solutions in the Wronskian form are constructed, and the [Formula: see text]- and [Formula: see text]-soliton solutions are proved to satisfy the bilinear BT; (b) Based on the second type, via the Hirota method, the one- and two-soliton solutions are obtained. Those two types of solutions are different. Graphic analysis on the two types shows that the soliton velocity depends on [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text], the soliton amplitude is merely related to [Formula: see text], and the background depends on [Formula: see text] and [Formula: see text], where [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] are the dissipative, dispersive, nonuniform and line-damping coefficients, respectively, and [Formula: see text] is the external-force term. We present some types of interactions between the two solitons, including the head-on and overtaking interactions, interactions between the velocity- and amplitude-unvarying two solitons, between the velocity-varying while amplitude-unvarying two solitons and between the velocity- and amplitude-varying two solitons, as well as the interactions occurring on the constant and varying backgrounds.


2012 ◽  
Vol 16 (5) ◽  
pp. 1476-1479 ◽  
Author(s):  
Sheng Zhang ◽  
Qun Gao ◽  
Qian-An Zong ◽  
Dong Liu

As a typical mathematical model in fluids and plasmas, Korteweg-de Vries equation is famous. In this paper, the Exp-function method is extended to a nonisos-pectral Korteweg-de Vries type equation with three variable coefficients, and multi-wave solutions are obtained. It is shown that the Expfunction method combined with appropriate ansatz may provide with a straightforward, effective and alternative method for constructing multi-wave solutions of variable-coefficient non-linear evolution equations.


2017 ◽  
Vol 89 (1) ◽  
pp. 617-622 ◽  
Author(s):  
Ritu Pal ◽  
Harleen Kaur ◽  
Thokala Soloman Raju ◽  
C. N. Kumar

Sign in / Sign up

Export Citation Format

Share Document