atmospheric blocking
Recently Published Documents


TOTAL DOCUMENTS

237
(FIVE YEARS 103)

H-INDEX

32
(FIVE YEARS 6)

2022 ◽  
Vol 3 (1) ◽  
pp. 21-44
Author(s):  
Sonja Murto ◽  
Rodrigo Caballero ◽  
Gunilla Svensson ◽  
Lukas Papritz

Abstract. Atmospheric blocking can influence Arctic weather by diverting the mean westerly flow and steering cyclones polewards, bringing warm, moist air to high latitudes. Recent studies have shown that diabatic heating processes in the ascending warm conveyor belt branch of extratropical cyclones are relevant to blocking dynamics. This leads to the question of the extent to which diabatic heating associated with mid-latitude cyclones may influence high-latitude blocking and drive Arctic warm events. In this study we investigate the dynamics behind 50 extreme warm events of wintertime high-Arctic temperature anomalies during 1979–2016. Classifying the warm events based on blocking occurrence within three selected sectors, we find that 30 of these events are associated with a block over the Urals, featuring negative upper-level potential vorticity (PV) anomalies over central Siberia north of the Ural Mountains. Lagrangian back-trajectory calculations show that almost 60 % of the air parcels making up these negative PV anomalies experience lifting and diabatic heating (median 11 K) in the 6 d prior to the block. Further, almost 70 % of the heated trajectories undergo maximum heating in a compact region of the mid-latitude North Atlantic, temporally taking place between 6 and 1 d before arriving in the blocking region. We also find anomalously high cyclone activity (on average five cyclones within this 5 d heating window) within a sector northwest of the main heating domain. In addition, 10 of the 50 warm events are associated with blocking over Scandinavia. Around 60 % of the 6 d back trajectories started from these blocks experience diabatic heating, of which 60 % undergo maximum heating over the North Atlantic but generally closer to the time of arrival in the block and further upstream relative to heated trajectories associated with Ural blocking. This study suggests that, in addition to the ability of blocks to guide cyclones northwards, Atlantic cyclones play a significant role in the dynamics of high-latitude blocking by providing low-PV air via moist-diabatic processes. This emphasizes the importance of the mutual interactions between mid-latitude cyclones and Eurasian blocking for wintertime Arctic warm extremes.


2021 ◽  
Author(s):  
Joshua Dorrington ◽  
Kristian Strommen ◽  
Federico Fabiano

Abstract. Even the most advanced climate models struggle to reproduce the observed wintertime circulation of the atmosphere over the North Atlantic and Western Europe. During winter, this particularly challenging region is dominated by eddy-driven and highly non-linear flows, which are often studied from the perspective of regimes – a small number of qualitatively distinct atmospheric states. Poor representation of regimes associated with persistent atmospheric blocking events, or variations in jet latitude, degrade the ability of models to correctly simulate extreme events. In this paper we leverage a recently developed hybrid approach – which combines both jet and geopotential height data – to assess the representation of regimes in 8,400 years of historical climate simulations drawn from CMIP6, CMIP5 and HighResMip. We show that these geopotential-jet regimes are particularly suited to the analysis of climate data, with considerable reductions in sampling variability compared to classical regime approaches. We find that CMIP6 has a considerably improved spatial regime structure, and a more trimodal eddy-driven jet, relative to CMIP5, but still struggles with underpersistent regimes, and too little European blocking, when compared to reanalysis. Reduced regime persistence can be understood, at least in part, as a result of jets that are too fast and eddy feedbacks on the jet stream that are too weak – structural errors that do not noticeably improve in higher resolution models.


2021 ◽  
Vol 48 (17) ◽  
Author(s):  
Minghao Yang ◽  
Dehai Luo ◽  
Chongyin Li ◽  
Yao Yao ◽  
Xin Li ◽  
...  

2021 ◽  
Author(s):  
Lisa-Ann Kautz ◽  
Olivia Martius ◽  
Stephan Pfahl ◽  
Joaquim G. Pinto ◽  
Alexandre M. Ramos ◽  
...  

Abstract. The physical understanding and timely prediction of extreme weather events are of enormous importance to society regarding associated impacts. In this article, we highlight several types of weather extremes occurring in Europe in connection with a particular atmospheric flow pattern, known as atmospheric blocking. This flow pattern effectively blocks the prevailing westerly large-scale atmospheric flow, resulting in changing flow anomalies in the vicinity of the blocking system and persistent conditions in the immediate region of its occurrence. Blockings are long-lasting, quasi-stationary, self-sustaining systems that occur frequently over certain regions. Their presence and characteristics have an impact on the predictability of weather extremes and can thus be used as potential indicators. The phasing between the surface and the upper-level blocking anomalies is of major importance for the development of the extreme event. In summer, heat waves and droughts form below the blocking anticyclone primarily via large-scale subsidence that leads to cloud-free skies and thus, persistent longwave radiative warming of the ground. In winter, cold waves that occur during atmospheric blocking are normally observed downstream or south of these systems. Here, horizontal advection of cold air masses from higher latitudes plays a decisive role. Extreme snowfall can also occur with the lower temperatures, indicating a shift of the storm track due to the blocking system. Such a shift is also crucial in the connection of blocking with wind and precipitation anomalies in general. Due to this multifaceted linkages, compound events are often observed in conjunction with blocking conditions.


2021 ◽  
Vol 14 (8) ◽  
pp. 5023-5048
Author(s):  
Paul A. Ullrich ◽  
Colin M. Zarzycki ◽  
Elizabeth E. McClenny ◽  
Marielle C. Pinheiro ◽  
Alyssa M. Stansfield ◽  
...  

Abstract. TempestExtremes (TE) is a multifaceted framework for feature detection, tracking, and scientific analysis of regional or global Earth system datasets on either rectilinear or unstructured/native grids. Version 2.1 of the TE framework now provides extensive support for examining both nodal (i.e., pointwise) and areal features, including tropical and extratropical cyclones, monsoonal lows and depressions, atmospheric rivers, atmospheric blocking, precipitation clusters, and heat waves. Available operations include nodal and areal thresholding, calculations of quantities related to nodal features such as accumulated cyclone energy and azimuthal wind profiles, filtering data based on the characteristics of nodal features, and stereographic compositing. This paper describes the core algorithms (kernels) that have been added to the TE framework since version 1.0, including algorithms for editing pointwise trajectory files, composition of fields around nodal features, generation of areal masks via thresholding and nodal features, and tracking of areal features in time. Several examples are provided of how these kernels can be combined to produce composite algorithms for evaluating and understanding common atmospheric features and their underlying processes. These examples include analyzing the fraction of precipitation from tropical cyclones, compositing meteorological fields around extratropical cyclones, calculating fractional contribution to poleward vapor transport from atmospheric rivers, and building a climatology of atmospheric blocks.


2021 ◽  
Vol 8 (1) ◽  
pp. 41
Author(s):  
Bahtiyar Efe ◽  
Anthony R. Lupo

Atmospheric blocking plays an important role in modulating mid-latitude weather, in particular in the Northern Hemisphere (NH). Trend analysis of atmospheric blocking for both hemispheres by using Şen’s Innovative Trend Analysis (ITA) is performed in this study. The blocking data archived in the University of Missouri covers the period of 1968–2019 for the NH and 1970–2019 for the Southern Hemisphere is used in the study. Block occurrence, duration and blocking intensity (BI) is analysed by classifying the NH (and SH) into three groups according to the preferred blocking locations: Atlantic, Pacific and Continental (Atlantic, Pacific and Indian). In the NH, blocking intensity showed mixed results. It showed a decreasing trend for the entire hemisphere and Atlantic Region, whilst a different trend was shown for different BI clusters. For blocking numbers and duration, the entire hemisphere and regions showed increasing trends. These increasing trend values were also statistically significant. In the SH, blocking intensity showed a decreasing trend for low clusters, whilst medium and high cluster increased for the entire hemisphere. Block duration showed an increasing trend for the entire SH. Block numbers showed increasing trends, except for one point in the low cluster. Blocking characteristics showed different trends for different preferred blocking locations. Increasing trends of blocking numbers for the overall SH and Pacific region are statistically significant at 95% level. Increasing trends of blocking duration for the overall SH, Atlantic and Pacific region are statistically significant at 90%, 95% and 95% level, respectively.


2021 ◽  
Vol 8 (1) ◽  
pp. 37
Author(s):  
Sama Al-Dabbagh ◽  
Hadil AL-Shouhani ◽  
Nabaa Hussein

A series of huge wildfires occurred in some regions of Lebanon in mid-October 2019, when the region witnessed a heat wave with high averages of minimum and maximum temperatures, accompanied by dry weather conditions. This study aimed to investigate the weather pattern that predominated over Lebanon between 10 and 18 October 2019, and to study the weather factors that ignited and spread the fire in several places. The study focused on the Chouf district, in Mount Lebanon Governorate, which witnessed the most severe wildfire outbreak, based on ERA5 atmospheric reanalysis data at the surface and upper levels between 10 and 18 October 2019. It was found that the existence of an atmospheric blocking system over the region for many days was the main factor in the creation of the dry and extremely hot weather, and that the breakdown of the ridge ignited the fire, reinforcing the wildfire’s intensity and spreading fire patches to other regions.


2021 ◽  
Author(s):  
Sara Bacer ◽  
Fatima Jomaa ◽  
Julien Beaumet ◽  
Hubert Gallée ◽  
Enzo Le Bouëdec ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document