Phase transitions in a three-dimensional kinetic spin-1/2 Ising model with random field: Effective-field-theory study

2012 ◽  
Vol 85 (1) ◽  
Author(s):  
Emanuel Costabile ◽  
J. Ricardo de Sousa
2016 ◽  
Vol 30 (17) ◽  
pp. 1630011
Author(s):  
Minos A. Neto ◽  
J. Ricardo de Sousa ◽  
Igor T. Padilha ◽  
Octavio D. Rodriguez Salmon ◽  
J. Roberto Viana ◽  
...  

We study the three-dimensional antiferromagnetic Ising model in both uniform longitudinal [Formula: see text] and transverse [Formula: see text] magnetic fields by using the effective-field theory (EFT) with finite cluster [Formula: see text] spin (EFT-1). We analyzed the behavior of the magnetic susceptibility to investigate the reentrant phenomena that we have seen in the same phase diagram previously obtained in other papers. Our results shows the presence of two divergences in the susceptibility that indicates the existence of a reentrant behavior.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Marieke Postma ◽  
Graham White

Abstract To obtain a first order phase transition requires large new physics corrections to the Standard Model (SM) Higgs potential. This implies that the scale of new physics is relatively low, raising the question whether an effective field theory (EFT) description can be used to analyse the phase transition in a (nearly) model-independent way. We show analytically and numerically that first order phase transitions in perturbative extensions of the SM cannot be described by the SM-EFT. The exception are Higgs-singlet extension with tree-level matching; but even in this case the SM-EFT can only capture part of the full parameter space, and if truncated at dim-6 operators, the description is at most qualitative. We also comment on the applicability of EFT techniques to dark sector phase transitions.


Sign in / Sign up

Export Citation Format

Share Document