scholarly journals Wavy Taylor vortices in molecular dynamics simulation of cylindrical Couette flow

2016 ◽  
Vol 93 (4) ◽  
Author(s):  
David J. Trevelyan ◽  
Tamer A. Zaki
2019 ◽  
Vol 21 (32) ◽  
pp. 17786-17791 ◽  
Author(s):  
Chengzhi Hu ◽  
Dawei Tang ◽  
Jizu Lv ◽  
Minli Bai ◽  
Xiaoliang Zhang

There was a critical load (Pcrit), such that the friction-reduction of superhydrophobic surfaces appeared only when the load < Pcrit.


2012 ◽  
Vol 5 (1) ◽  
pp. 21-27 ◽  
Author(s):  
Wenzheng Cui ◽  
Minli Bai ◽  
Jizu Lv ◽  
Xiaojie Li

Adding a small amount of nanoparticles to conventional fluids (nanofluids) has been proved to be an effective way for improving capability of heat transferring in base fluids. The change in micro structure of base fluids and micro motion of nanoparticles may be key factors for heat transfer enhancement of nanofluids. Therefore, it is essential to examine these mechanisms on microscopic level. The present work performed a Molecular Dynamics simulation on Couette flow of nanofluids and investigated the microscopic flow characteristics through visual observation and statistic analysis. It was found that the even-distributed liquid argon atoms near solid surfaces of nanoparticles could be seemed as a reform to base liquid and had contributed to heat transfer enhancement. In the process of Couette flow, nanoparticles moved quickly in the shear direction accompanying with motions of rotation and vibration in the other two directions. When the shearing velocity was increased, the motions of nanoparticles were strengthened significantly. The motions of nanoparticles could disturb the continuity of fluid and strengthen partial flowing around nanoparticles, and further enhanced heat transferring in nanofluids.


Sign in / Sign up

Export Citation Format

Share Document