high shear rate
Recently Published Documents


TOTAL DOCUMENTS

196
(FIVE YEARS 27)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ying Zhou ◽  
Yumo Zhang ◽  
Xiaoyan Zhang ◽  
Zhuo Chen ◽  
Jian Dong ◽  
...  

Objective. To study the effects of five tuina manipulations in rats with deep vein thrombosis (DVT) and to explore how to safely perform tuina in the treatment of thrombotic diseases. Methods. Seventy-two male Sprague-Dawley (SD) rats were randomly divided into the model, pointing manipulation, plucking manipulation, kneading manipulation, pushing manipulation, and pulling manipulation groups (n = 12). DVT model was established by incomplete ligation. The tuina intervention was started on the next day after modeling and applied once a day 10 times by the manipulation simulators. On the 3rd and 10th days after intervention, respectively, the effects of tuina on thrombosis were evaluated based on thrombus elasticity, blood coagulation, fibrinolytic function and blood rheology with the ultrasound elastography, four coagulation tests, enzyme linked immunosorbent assay (ELISA), and hemorheology tests. Results. In the pointing manipulation group, the strain rate ratio, 6-ketoprostaglandin F1α (6-Keto-PGF1α), and high shear rate were decreased, and the thromboxane B2 (TXB2) content was increased ( P < 0.05 ). In the plucking manipulation group, the D-dimer and 6-Keto-PGF1α contents were increased, prothrombin time (PT) was shortened, and activated partial thromboplastin time (APTT) was activated, and the high shear rate and plasma viscosity were decreased ( P < 0.05 ). In the kneading manipulation group, APTT was shortened, and 6-Keto-PGF1α, high shear rate, and plasma viscosity were decreased ( P < 0.05 ). In the pushing manipulation group, the strain rate ratio, low shear rate, and high shear rate were all decreased ( P < 0.05 ). In the pulling manipulation group, both the strain rate ratio and the low shear rate were decreased ( P < 0.05 ). The 6-Keto-PGF1α changes on the 3rd and 10th days after intervention were opposite in the pushing manipulation group and the pulling manipulation group ( P < 0.05 ). Conclusion. The pointing, pushing, and pulling manipulations seem to be safe in the early period of thrombosis, but the risk is likely to be elevated as the treatment course of intervention increases. The plucking and kneading manipulations potentially have certain risks in the treatment of DVT in rats.


2021 ◽  
Author(s):  
◽  
Stefan Kuczera

<p>A flow phenomena called ‘shear banding’ is often observed for a certain class of complex fluids, namely wormlike micellar solutions. Wormlike micelles are elongated flexible self-assembly structures formed by the aggregation of amphiphiles, which may entangle into a dynamic network above a certain concentration threshold. The entanglement results in the sample having both solid-like (elastic) and liquid-like (viscous) properties, an ambiguity commonly found in complex fluids. Under certain shear conditions, the flow couples with the structure of the micellar network, leading to the formation of (shear) bands with differing viscosity.  The principle goal of this work is to address open questions regarding the temporal and spatial stability of shear banded flow. Shear banding is often studied in cylindrical Couette cells, where the fluid is sheared in a gap between differentially rotating concentric cylinders. For the sake of an accurate description of the flow in such a shear cell, the methodology for a 2D Nuclear Magnetic Resonance (NMR) velocimetry technique (known as PGSE-RARE), which offers high temporal and spatial resolution, is improved and refined. Two main challenges are identified and overcome. The first concerns the fact that the velocity imaging process operates on a Cartesian grid, whereas the flow in the Couette cell is of cylindrical symmetry. Numerical calculations and NMR simulations based on the Bloch equations, as well as experimental evidence, give insight on the appropriate selection of the fluid volume over which velocity information is accumulated and the preferred scheme through which the NMR image is acquired in the so-called k-space. The small extent of the fluid gap for the cells in use is the second challenge. In this respect, a variant of the velocimetry technique is developed, which offers ultra high resolution in the gap direction, necessary for a detailed description of the flow profile in the banded state.  The refined methodology is applied in a thorough study of a certain wormlike micellar solution (‘10% CPCl’), which is known to exhibit spatiotemporal fluctuations and has been subject of numerous studies over the past 20 years. NMR results are supported by a recently developed 2D Rheo-USV (Ultrasonic Speckle Velocimetry) method, which offers an even higher temporal resolution. The two complementary methods show good agreement for averaged velocity profiles. In line with previous studies the fluid is found to follow a standard anomalous lever rule, which is characterized by a constant shear rate in the high viscosity band and a varying shear rate and proportion of the high shear rate band. In particular, the high resolution NMR variant allows a refined picture on the dynamics of the interface between the two bands. Furthermore, slip is observed for all investigated shear rates. The amount of slip, however, is found to strongly depend on the specifities of the Couette cells in use. Spatially and temporally resolved flow maps reveal various flow instabilities. Ultrasound measurements show vorticity structures in the order of the gap width. In the NMR case no such structures are observed due to the lower resolution in the axial direction. For higher shear rates the occurrence of turbulent bursts is detected for USV. No direct evidence of similar flow instabilities is found in the NMR case. Finally, broad distributions dominate the high shear rate band in temporally and spatially resolved velocity profiles, showing the fluctuative nature of the flow.</p>


2021 ◽  
Author(s):  
◽  
Stefan Kuczera

<p>A flow phenomena called ‘shear banding’ is often observed for a certain class of complex fluids, namely wormlike micellar solutions. Wormlike micelles are elongated flexible self-assembly structures formed by the aggregation of amphiphiles, which may entangle into a dynamic network above a certain concentration threshold. The entanglement results in the sample having both solid-like (elastic) and liquid-like (viscous) properties, an ambiguity commonly found in complex fluids. Under certain shear conditions, the flow couples with the structure of the micellar network, leading to the formation of (shear) bands with differing viscosity.  The principle goal of this work is to address open questions regarding the temporal and spatial stability of shear banded flow. Shear banding is often studied in cylindrical Couette cells, where the fluid is sheared in a gap between differentially rotating concentric cylinders. For the sake of an accurate description of the flow in such a shear cell, the methodology for a 2D Nuclear Magnetic Resonance (NMR) velocimetry technique (known as PGSE-RARE), which offers high temporal and spatial resolution, is improved and refined. Two main challenges are identified and overcome. The first concerns the fact that the velocity imaging process operates on a Cartesian grid, whereas the flow in the Couette cell is of cylindrical symmetry. Numerical calculations and NMR simulations based on the Bloch equations, as well as experimental evidence, give insight on the appropriate selection of the fluid volume over which velocity information is accumulated and the preferred scheme through which the NMR image is acquired in the so-called k-space. The small extent of the fluid gap for the cells in use is the second challenge. In this respect, a variant of the velocimetry technique is developed, which offers ultra high resolution in the gap direction, necessary for a detailed description of the flow profile in the banded state.  The refined methodology is applied in a thorough study of a certain wormlike micellar solution (‘10% CPCl’), which is known to exhibit spatiotemporal fluctuations and has been subject of numerous studies over the past 20 years. NMR results are supported by a recently developed 2D Rheo-USV (Ultrasonic Speckle Velocimetry) method, which offers an even higher temporal resolution. The two complementary methods show good agreement for averaged velocity profiles. In line with previous studies the fluid is found to follow a standard anomalous lever rule, which is characterized by a constant shear rate in the high viscosity band and a varying shear rate and proportion of the high shear rate band. In particular, the high resolution NMR variant allows a refined picture on the dynamics of the interface between the two bands. Furthermore, slip is observed for all investigated shear rates. The amount of slip, however, is found to strongly depend on the specifities of the Couette cells in use. Spatially and temporally resolved flow maps reveal various flow instabilities. Ultrasound measurements show vorticity structures in the order of the gap width. In the NMR case no such structures are observed due to the lower resolution in the axial direction. For higher shear rates the occurrence of turbulent bursts is detected for USV. No direct evidence of similar flow instabilities is found in the NMR case. Finally, broad distributions dominate the high shear rate band in temporally and spatially resolved velocity profiles, showing the fluctuative nature of the flow.</p>


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3892
Author(s):  
Yuya Sasai ◽  
Yoshio Iizuka ◽  
Kaho Osada ◽  
Kentaro Taki

Manufacturing meltblown nonwoven fabrics requires special grades of resin with very low viscosity, which are not dealt with so much on market and cost quite high compared to the standard grades. We propose a high-shear rate processing method that can quickly and easily produce such low-viscosity resin from the commercial one without using organic peroxides. In this method, we apply high-shear stress to molten resin by using a high-shear extruder, which is a single screw extruder with high screw rotation speed, and the resin is thermally decomposed of its shear-induced heat which is quickly generated. We found that polypropylene with a value of melt flow rate over a thousand, which was required for the meltblown process, was produced from the standard grade with the high-shear extruder at the screw rotation speed of 3600 min−1 and the barrel temperature over 300 ∘C. Using the degradated polypropylene, a meltblown nonwoven fabric sheet was successfully fabricated. We also developed a numerical simulator of the high-shear extruder which can handle a wide range of the screw rotation speed and barrel temperature by the Nusselt number modulated with the operational conditions. The experimental values of the zero-shear viscosity and temperature at the exit of the extruder agreed well with the simulation results. Our high-shear rate processing method will enable us to quickly and easily produce various meltblown nonwoven fabric sheets at low costs.


Author(s):  
Mohsan Hassan ◽  
Abrar Faisal ◽  
Khurram Javid ◽  
Salah Ud-Din Khan ◽  
Ashfaq Ahmad ◽  
...  

Background: Non-Newtonian fluids, especially shear thinning fluids, have several applications in the polymer industry, food industry, and even in everyday life. The viscosity of shear thinning fluids is sometimes decreased by two or three orders of magnitude due to the alignment of the molecules in order when the shear rate is increased, and it cannot be ignored in the case of polymer processing and lubrication problems. Objective: So, the effects of viscosities at a low and high shear rate on the heat and mass boundary layer flow of shear thinning fluid over moving belts is investigated in this study. For this proposed, the generalized Carreau model of viscosity relates to shear rate and is used in the momentum equation. The Carreau model contains the five parameters: low shear rate viscosity, high shear rate viscosity, viscosity curvature, consistency index, and flow behavior index. For the heat flow, expression of the thermal conductivity model, similar to the viscosity equation due to the non-Newtonian nature of the fluid, is used in the energy equation. Methods: On the mathematical model of the problem, boundary layer approximations are applied and then simplified by applying the similarity transformations to get the solution. The solution of the simplified equations is obtained by numerical technique RK-Shooting Method. The results are compared with existing results for limited cases and good agreement is found. Results : The results are obtained in the form of velocity and temperature profiles under the impact of all the viscosity’s parameters and are displayed in graphical form. Moreover, the boundary layer parameters such as the thickness of the regions, momentum thickness, and displacement thickness are calculated to understand the structure of the boundary layer flow of fluid. Conclusion: The velocity and temperature of the fluid are decreased and increased respectively by all viscosity’s parameters of the model. So, the results of the boundary layer fluid flow under rheological parameters will not only help engineers to design superior chemical equipment, but will also help improve the economy and efficiency of the overall process.


Author(s):  
Jordan Hirschman ◽  
Deepika Venkataramani ◽  
Markela Ibo Murphy ◽  
Sajal M. Patel ◽  
Jiali Du ◽  
...  

2021 ◽  
pp. 106274
Author(s):  
Yongzhe Li ◽  
Lingling Deng ◽  
Gengxin Du ◽  
Yaxing Li ◽  
Xinyan Zhao ◽  
...  

Ugol ◽  
2021 ◽  
pp. 72-77
Author(s):  
T. Orupold ◽  
◽  
D. Starr ◽  
A. Leyfried ◽  
V. Titov ◽  
...  

2021 ◽  
pp. 116133
Author(s):  
Saeideh Hassanzadeh ◽  
Ali Nematollahzadeh ◽  
Behruz Mirzayi ◽  
S. Fatemeh Kaboli

Sign in / Sign up

Export Citation Format

Share Document