scholarly journals Exponential bound in the quest for absolute zero

2017 ◽  
Vol 96 (4) ◽  
Author(s):  
Dionisis Stefanatos
1978 ◽  
Vol 48 ◽  
pp. 31-35
Author(s):  
R. B. Hanson

Several outstanding problems affecting the existing parallaxes should be resolved to form a coherent system for the new General Catalogue proposed by van Altena, as well as to improve luminosity calibrations and other parallax applications. Lutz has reviewed several of these problems, such as: (A) systematic differences between observatories, (B) external error estimates, (C) the absolute zero point, and (D) systematic observational effects (in right ascension, declination, apparent magnitude, etc.). Here we explore the use of cluster and spectroscopic parallaxes, and the distributions of observed parallaxes, to bring new evidence to bear on these classic problems. Several preliminary results have been obtained.


Author(s):  
Dennis Sherwood ◽  
Paul Dalby

The Third Law was introduced in Chapter 9; this chapter develops the Third Law more fully, introducing absolute entropies, and examining how adiabatic demagnetisation can be used to approach the absolute zero of temperature.


2013 ◽  
Vol 95 (2) ◽  
pp. 158-168
Author(s):  
H.-Q. BUI ◽  
R. S. LAUGESEN

AbstractEvery bounded linear operator that maps ${H}^{1} $ to ${L}^{1} $ and ${L}^{2} $ to ${L}^{2} $ is bounded from ${L}^{p} $ to ${L}^{p} $ for each $p\in (1, 2)$, by a famous interpolation result of Fefferman and Stein. We prove ${L}^{p} $-norm bounds that grow like $O(1/ (p- 1))$ as $p\downarrow 1$. This growth rate is optimal, and improves significantly on the previously known exponential bound $O({2}^{1/ (p- 1)} )$. For $p\in (2, \infty )$, we prove explicit ${L}^{p} $ estimates on each bounded linear operator mapping ${L}^{\infty } $ to bounded mean oscillation ($\mathit{BMO}$) and ${L}^{2} $ to ${L}^{2} $. This $\mathit{BMO}$ interpolation result implies the ${H}^{1} $ result above, by duality. In addition, we obtain stronger results by working with dyadic ${H}^{1} $ and dyadic $\mathit{BMO}$. The proofs proceed by complex interpolation, after we develop an optimal dyadic ‘good lambda’ inequality for the dyadic $\sharp $-maximal operator.


1989 ◽  
Vol 86 (15) ◽  
pp. 5671-5671 ◽  
Author(s):  
N. Yu ◽  
H. Dehmelt ◽  
W. Nagourney

1947 ◽  
Vol 15 (6) ◽  
pp. 451-457
Author(s):  
Simon A. Weissman
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document