scholarly journals System Size, Energy, and Centrality Dependence of Pseudorapidity Distributions of Charged Particles in Relativistic Heavy-Ion Collisions

2009 ◽  
Vol 102 (14) ◽  
Author(s):  
B. Alver ◽  
B. B. Back ◽  
M. D. Baker ◽  
M. Ballintijn ◽  
D. S. Barton ◽  
...  
2020 ◽  
Vol 804 ◽  
pp. 135366
Author(s):  
S. Zhang ◽  
Y.G. Ma ◽  
G.L. Ma ◽  
J.H. Chen ◽  
Q.Y. Shou ◽  
...  

2007 ◽  
Vol 16 (10) ◽  
pp. 3379-3385 ◽  
Author(s):  
MEIJUAN WANG ◽  
YUANFANG WU

Rapidity and azimuthal correlation patterns for nucleon and relativistic heavy ion collisions are systematically studied by using PYTHIA for pp collisions, RQMD and AMPT for Au − Au collisions at [Formula: see text], respectively. The results show that the measures are sensitive to the collision particles, system size and production mechanism of the system.


Open Physics ◽  
2012 ◽  
Vol 10 (6) ◽  
Author(s):  
Wu Yuanfang ◽  
Chen Lizhu ◽  
Pan Xue ◽  
Shao Ming ◽  
Xiaosong Chen

AbstractAccounting for the influence of system size in relativistic heavy ion collisions, the finite-size form of a critical related observable is suggested. The fixed-point and straight line methods are proposed in exploring the QCD critical point and phase boundary in relativistic heavy ion collisions. As an application, the finitesize behaviour of the ratios of higher net-proton cumulants, dynamical electric charge fluctuations, and transverse momentum correlations in Au + Au collisions at RHIC are examined.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Z. J. Jiang ◽  
Dongfang Xu ◽  
Yan Huang

In heavy ion collisions, charged particles come from two parts: the hot and dense matter and the leading particles. In this paper, the hot and dense matter is assumed to expand according to the hydrodynamic model including phase transition and decouples into particles via the prescription of Cooper-Frye. The leading particles are as usual supposed to have Gaussian rapidity distributions with the number equaling that of participants. The investigations of this paper show that, unlike low energy situations, the leading particles are essential in describing the pseudorapidity distributions of charged particles produced in high energy heavy ion collisions. This might be due to the different transparencies of nuclei at different energies.


2021 ◽  
Vol 136 (6) ◽  
Author(s):  
Rajendra Nath Patra ◽  
Bedangadas Mohanty ◽  
Tapan K. Nayak

AbstractThe thermodynamic properties of matter created in high-energy heavy-ion collisions have been studied in the framework of the non-extensive Tsallis statistics. The transverse momentum ($$p_\mathrm{T}$$ p T ) spectra of identified charged particles (pions, kaons, protons) and all charged particles from the available experimental data of Au-Au collisions at the Relativistic Heavy Ion Collider (RHIC) energies and Pb-Pb collisions at the Large Hadron Collider (LHC) energies are fitted by the Tsallis distribution. The fit parameters, q and T, measure the degree of deviation from an equilibrium state and the effective temperature of the thermalized system, respectively. The $$p_\mathrm{T}$$ p T  spectra are well described by the Tsallis distribution function from peripheral to central collisions for the wide range of collision energies, from $$\sqrt{s_\mathrm{NN}}$$ s NN = 7.7 GeV to 5.02 TeV. The extracted Tsallis parameters are found to be dependent on the particle species, collision energy, centrality, and fitting ranges in $$p_\mathrm{T}$$ p T . For central collisions, both q and T depend strongly on the fit ranges in $$p_\mathrm{T}$$ p T . For most of the collision energies, q remains almost constant as a function of centrality, whereas T increases from peripheral to central collisions. For a given centrality, q systematically increases as a function of collision energy, whereas T has a decreasing trend. A profile plot of q and T with respect to collision energy and centrality shows an anti-correlation between the two parameters.


Sign in / Sign up

Export Citation Format

Share Document