central collisions
Recently Published Documents


TOTAL DOCUMENTS

186
(FIVE YEARS 22)

H-INDEX

29
(FIVE YEARS 1)

2021 ◽  
Vol 81 (11) ◽  
Author(s):  
S. Acharya ◽  
D. Adamová ◽  
A. Adler ◽  
J. Adolfsson ◽  
G. Aglieri Rinella ◽  
...  

AbstractMeasurements of event-by-event fluctuations of charged-particle multiplicities in Pb–Pb collisions at $$\sqrt{s_{\mathrm {NN}}}$$ s NN  $$=$$ =  2.76 TeV using the ALICE detector at the CERN Large Hadron Collider (LHC) are presented in the pseudorapidity range $$|\eta |<0.8$$ | η | < 0.8 and transverse momentum $$0.2< p_{\mathrm{T}} < 2.0$$ 0.2 < p T < 2.0  GeV/c. The amplitude of the fluctuations is expressed in terms of the variance normalized by the mean of the multiplicity distribution. The $$\eta $$ η and $$p_{\mathrm{T}}$$ p T dependences of the fluctuations and their evolution with respect to collision centrality are investigated. The multiplicity fluctuations tend to decrease from peripheral to central collisions. The results are compared to those obtained from HIJING and AMPT Monte Carlo event generators as well as to experimental data at lower collision energies. Additionally, the measured multiplicity fluctuations are discussed in the context of the isothermal compressibility of the high-density strongly-interacting system formed in central Pb–Pb collisions.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Shaista Khan ◽  
Bushra Ali ◽  
Anuj Chandra ◽  
Shakeel Ahmad

A Monte Carlo study of identified particle ratio fluctuations at LHC energies is carried out in the framework of HIJING model using the fluctuation variable ν dyn . The simulated events for Pb-Pb collisions at s N N = 2.76 and 5.02 TeV and Xe-Xe collisions at s N N = 5.44   TeV are analyzed. From this study, it is observed that the values of π , K , p , K , and π , p follow the similar trends of energy dependence as observed in the most central collision data by NA49, STAR, and ALICE experiments. It is also observed that ν dyn for all the three combinations of particles for semicentral and central collisions, the model predicted values of ν dyn A , B for Pb-Pb collisions at s N N = 2.76   TeV agree fairly well with those observed in the ALICE experiment. For peripheral collisions, however, the model predicted values of ν dyn π , K are somewhat smaller, whereas for p , K and π , p it predicts larger values as compared to the corresponding experimental values. The possible reasons for the observed differences are discussed. The ν dyn values scaled with charged particle density when plotted against N part exhibit a flat behaviour, as expected from the independent particle emission sources. For p , K and π , p combinations, a departure from the flat trend is, however, observed in central collisions in the case of low p T window when the effect of jet quenching or resonances is considered. Furthermore, the study of ν dyn A , B dependence on particle density for various collision systems (including proton-proton collisions) suggests that at LHC energies ν dyn values for a given particle pair are simply a function of charged particle density, irrespective of system size, beam energy, and collision centrality.


2021 ◽  
Vol 136 (6) ◽  
Author(s):  
Rajendra Nath Patra ◽  
Bedangadas Mohanty ◽  
Tapan K. Nayak

AbstractThe thermodynamic properties of matter created in high-energy heavy-ion collisions have been studied in the framework of the non-extensive Tsallis statistics. The transverse momentum ($$p_\mathrm{T}$$ p T ) spectra of identified charged particles (pions, kaons, protons) and all charged particles from the available experimental data of Au-Au collisions at the Relativistic Heavy Ion Collider (RHIC) energies and Pb-Pb collisions at the Large Hadron Collider (LHC) energies are fitted by the Tsallis distribution. The fit parameters, q and T, measure the degree of deviation from an equilibrium state and the effective temperature of the thermalized system, respectively. The $$p_\mathrm{T}$$ p T  spectra are well described by the Tsallis distribution function from peripheral to central collisions for the wide range of collision energies, from $$\sqrt{s_\mathrm{NN}}$$ s NN = 7.7 GeV to 5.02 TeV. The extracted Tsallis parameters are found to be dependent on the particle species, collision energy, centrality, and fitting ranges in $$p_\mathrm{T}$$ p T . For central collisions, both q and T depend strongly on the fit ranges in $$p_\mathrm{T}$$ p T . For most of the collision energies, q remains almost constant as a function of centrality, whereas T increases from peripheral to central collisions. For a given centrality, q systematically increases as a function of collision energy, whereas T has a decreasing trend. A profile plot of q and T with respect to collision energy and centrality shows an anti-correlation between the two parameters.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Deeptak Biswas

We have estimated centrality variation of chemical freeze-out parameters from yield data at midrapidity of π ± , K ± and p , p ¯ for collision energies of RHIC (Relativistic Heavy Ion Collider), Beam Energy Scan (RHIC-BES) program, and LHC (Large Hadron Collider). We have considered a simple hadron resonance gas model and employed a formalism involving conserved charges ( B , Q , S ) of QCD for parameterization. Along with temperature and three chemical potentials ( T , μ B , μ Q , μ S ), a strangeness undersaturation factor ( γ S ) has been used to incorporate the partial equilibration in the strange sector. Our obtained freeze-out temperature does not vary much with centrality, whereas chemical potentials and γ S seem to have a significant dependence. The strange hadrons are found to deviate from a complete chemical equilibrium at freeze-out at the peripheral collisions. This deviation appears to be more prominent as the collision energy decreases at lower RHIC-BES energies. We have also shown that this departure from equilibrium reduces towards central collisions, and strange particle equilibration may happen after a threshold number of participants in A - A collision.


2021 ◽  
Vol 81 (4) ◽  
Author(s):  
E. Ferreira ◽  
A.K. Kohara ◽  
T. Kodama

AbstractWith analytical representation for the pp scattering amplitudes introduced and tested at lower energies, a description of high precision is given of the $$d\sigma /dt$$ d σ / d t data at $$\sqrt{s}= 13$$ s = 13  TeV for all values of the momentum transfer, with explicit identification of the real and imaginary parts. In both t and b coordinates the amplitudes have terms identified as of non-perturbative and perturbative nature, with distinction of their influences in forward and large |t| ranges and in central and peripheral regions respectively. In the forward range, the role of the Coulomb-nuclear interference phase is investigated. The energy dependence of the parameters of the amplitudes are reviewed and updated, revealing a possible emergence of a peculiar behavior of elastic and inelastic profiles in b-space for central collisions, which seems to be enhanced quickly at higher energies. Some other models are also briefly discussed in comparison, including the above mentioned behavior in b-space.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
S. Acharya ◽  
◽  
D. Adamová ◽  
A. Adler ◽  
J. Adolfsson ◽  
...  

Abstract The inclusive production of the J/ψ and ψ(2S) charmonium states is studied as a function of centrality in p-Pb collisions at a centre-of-mass energy per nucleon pair $$ \sqrt{s_{\mathrm{NN}}} $$ s NN = 8.16 TeV at the LHC. The measurement is performed in the dimuon decay channel with the ALICE apparatus in the centre-of-mass rapidity intervals −4.46 < ycms< −2.96 (Pb-going direction) and 2.03 < ycms< 3.53 (p-going direction), down to zero transverse momentum (pT). The J/ψ and ψ(2S) production cross sections are evaluated as a function of the collision centrality, estimated through the energy deposited in the zero degree calorimeter located in the Pb-going direction. The pT-differential J/ψ production cross section is measured at backward and forward rapidity for several centrality classes, together with the corresponding average 〈pT〉 and $$ \left\langle {p}_{\mathrm{T}}^2\right\rangle $$ p T 2 values. The nuclear effects affecting the production of both charmonium states are studied using the nuclear modification factor. In the p-going direction, a suppression of the production of both charmonium states is observed, which seems to increase from peripheral to central collisions. In the Pb-going direction, however, the centrality dependence is different for the two states: the nuclear modification factor of the J/ψ increases from below unity in peripheral collisions to above unity in central collisions, while for the ψ(2S) it stays below or consistent with unity for all centralities with no significant centrality dependence. The results are compared with measurements in p-Pb collisions at $$ \sqrt{s_{\mathrm{NN}}} $$ s NN = 5.02 TeV and no significant dependence on the energy of the collision is observed. Finally, the results are compared with theoretical models implementing various nuclear matter effects.


2021 ◽  
Author(s):  
Uliana Dmitrieva ◽  
Nikita Kozyrev ◽  
Aleksandr Svetlichnyi ◽  
Igor Pshenichnov

Author(s):  
J. Adamczewski-Musch ◽  
◽  
O. Arnold ◽  
C. Behnke ◽  
A. Belounnas ◽  
...  

AbstractWe present high-statistic data on charged-pion emission from Au + Au collisions at $$\sqrt{s_{\mathrm{NN}}} = 2.4~\hbox {GeV}$$ s NN = 2.4 GeV (corresponding to $$E_{beam} = 1.23~\hbox {A GeV}$$ E beam = 1.23 A GeV ) in four centrality classes in the range 0–40% of the most central collisions. The data are analyzed as a function of transverse momentum, transverse mass, rapidity, and polar angle. Pion multiplicity per participating nucleon decreases moderately with increasing centrality. The polar angular distributions are found to be non-isotropic even for the most central event class. Our results on pion multiplicity fit well into the general trend of the available world data, but undershoot by $$2.5~\sigma $$ 2.5 σ data from the FOPI experiment measured at slightly lower beam energy. We compare our data to state-of-the-art transport model calculations (PHSD, IQMD, PHQMD, GiBUU and SMASH) and find substantial differences between the measurement and the results of these calculations.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2054
Author(s):  
Yiting Wang ◽  
Lijuan Qian ◽  
Zhongli Chen ◽  
Fang Zhou

In engineering applications, the coalescence of droplets in the oil phase dominates the efficiency of water-oil separation. To improve the efficiency of water-oil separation, many studies have been devoted to exploring the process of water droplets colliding in the oil phase. In this paper, the volume of fluid (VOF) method is employed to simulate the coalescence of water droplets in the transformer oil based on small amounts of polymer. The influences of the initial diameter and collision parameter of two equal droplets on droplet deformation and coalescence time are investigated. The time evolution curves of the dimensionless maximum deformation diameter of the droplets indicate that the larger the droplet diameter, the more obvious the deformation from central collisions. As the collision parameter increases, the contact area of the two droplets, as well as the kinetic energy that is converted into surface energy, decreases, resulting in an increase in droplet deformation. Furthermore, the effects of the initial droplet diameter and collision parameter on coalescence time are also investigated and discussed. The results reveal that as the initial droplet diameter and collision parameter increase, the droplet coalescence time increases.


2020 ◽  
Vol 641 ◽  
pp. A159
Author(s):  
Maureen L. Nietiadi ◽  
Felipe Valencia ◽  
Rafael I. Gonzalez ◽  
Eduardo M. Bringa ◽  
Herbert M. Urbassek

Context. Collisions of nanoparticles (NPs) occur in dust clouds and protoplanetary disks. Aims. Sticking collisions lead to the growth of NPs, in contrast to bouncing or even fragmentation events and we aim to explore these processes in amorphous carbon NPs. Methods. Using molecular-dynamics simulations, we studied central collisions between amorphous carbon NPs that had radii in the range of 6.5–20 nm and velocities of 100–3000 m s−1, and with varying sp3 content (20–55%). Results. We find that the collisions are always sticking. The contact radius formed surpasses the estimate provided by the traditional Johnson-Kendall-Roberts model, pointing at the dominant influence of attractive forces between the NPs. Plasticity occurs via shear-transformation zones. In addition, we find bond rearrangements in the collision zone. Low-sp3 material (sp3 ≤ 40%) is compressed to sp3 > 50%. On the other hand, for the highest sp3 fraction, 55%, graphitization starts in the collision zone leading to low-density and even porous material. Conclusions. Collisions of amorphous carbon NPs lead to an increased porosity, atomic surface roughness, and changed hybridization that affect the mechanical and optical properties of the collided NPs.


Sign in / Sign up

Export Citation Format

Share Document