scholarly journals Fate of 2D Kinetic Ferromagnets and Critical Percolation Crossing Probabilities

2012 ◽  
Vol 109 (19) ◽  
Author(s):  
J. Olejarz ◽  
P. L. Krapivsky ◽  
S. Redner
1983 ◽  
Vol 20 (03) ◽  
pp. 529-536
Author(s):  
W. J. R. Eplett

A natural requirement to impose upon the life distribution of a component is that after inspection at some randomly chosen time to check whether it is still functioning, its life distribution from the time of checking should be bounded below by some specified distribution which may be defined by external considerations. Furthermore, the life distribution should ideally be minimal in the partial ordering obtained from the conditional probabilities. We prove that these specifications provide an apparently new characterization of the DFRA class of life distributions with a corresponding result for IFRA distributions. These results may be transferred, using Slepian's lemma, to obtain bounds for the boundary crossing probabilities of a stationary Gaussian process.


Author(s):  
D. G. Neal

AbstractThis paper describes new detailed Monte Carlo investigations into bond and site percolation problems on the set of eleven regular and semi-regular (Archimedean) lattices in two dimensions.


1999 ◽  
Vol 36 (4) ◽  
pp. 1019-1030 ◽  
Author(s):  
Alex Novikov ◽  
Volf Frishling ◽  
Nino Kordzakhia

Using the Girsanov transformation we derive estimates for the accuracy of piecewise approximations for one-sided and two-sided boundary crossing probabilities. We demonstrate that piecewise linear approximations can be calculated using repeated numerical integration. As an illustrative example we consider the case of one-sided and two-sided square-root boundaries for which we also present analytical representations in a form of infinite power series.


2002 ◽  
Vol 13 (03) ◽  
pp. 319-331 ◽  
Author(s):  
S. S. MANNA ◽  
T. DATTA ◽  
R. KARMAKAR ◽  
S. TARAFDAR

The restructuring process of diagenesis in the sedimentary rocks is studied using a percolation type model. The cementation and dissolution processes are modeled by the culling of occupied sites in rarefied and growth of vacant sites in dense environments. Starting from sub-critical states of ordinary percolation the system evolves under the diagenetic rules to critical percolation configurations. Our numerical simulation results in two dimensions indicate that the stable configuration has the same critical behavior as the ordinary percolation.


2009 ◽  
Vol 80 (5) ◽  
Author(s):  
Yoichiro Kondo ◽  
Namiko Mitarai ◽  
Hiizu Nakanishi

Sign in / Sign up

Export Citation Format

Share Document