scholarly journals Hybrid Semiclassical Theory of Quantum Quenches in One-Dimensional Systems

2017 ◽  
Vol 119 (10) ◽  
Author(s):  
Cătălin Paşcu Moca ◽  
Márton Kormos ◽  
Gergely Zaránd
2018 ◽  
Vol 4 (4) ◽  
Author(s):  
Alessandro Fabbri ◽  
Nicolas Pavloff

We study the two-body momentum correlation signal in a quasi one dimensional Bose-Einstein condensate in the presence of a sonic horizon. We identify the relevant correlation lines in momentum space and compute the intensity of the corresponding signal. We consider a set of different experimental procedures and identify the specific issues of each measuring process. We show that some inter-channel correlations, in particular the Hawking quantum-partner one, are particularly well adapted for witnessing quantum non-separability, being resilient to the effects of temperature and/or quantum quenches.


2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Lorenzo Piroli ◽  
Pasquale Calabrese ◽  
Fabian Essler

We study quantum quenches to the one-dimensional Bose gas with attractive interactions in the case when the initial state is an ideal one-dimensional Bose condensate. We focus on properties of the stationary state reached at late times after the quench. This displays a finite density of multi-particle bound states, whose rapidity distribution is determined exactly by means of the quench action method. We discuss the relevance of the multi-particle bound states for the physical properties of the system, computing in particular the stationary value of the local pair correlation function g_2g2.


2018 ◽  
Vol 4 (3) ◽  
Author(s):  
Vincenzo Alba ◽  
Pasquale Calabrese

The time evolution of the entanglement entropy in non-equilibrium quantum systems provides crucial information about the structure of the time-dependent state. For quantum quench protocols, by combining a quasiparticle picture for the entanglement spreading with the exact knowledge of the stationary state provided by Bethe ansatz, it is possible to obtain an exact and analytic description of the evolution of the entanglement entropy. Here we discuss the application of these ideas to several integrable models. First we show that for non-interacting systems, both bosonic and fermionic, the exact time-dependence of the entanglement entropy can be derived by elementary techniques and without solving the dynamics. We then provide exact results for interacting spin chains that are carefully tested against numerical simulations. Finally, we apply this method to integrable one-dimensional Bose gases (Lieb-Liniger model) both in the attractive and repulsive regimes. We highlight a peculiar behaviour of the entanglement entropy due to the absence of a maximum velocity of excitations.


Sign in / Sign up

Export Citation Format

Share Document