scholarly journals Entanglement dynamics after quantum quenches in generic integrable systems

2018 ◽  
Vol 4 (3) ◽  
Author(s):  
Vincenzo Alba ◽  
Pasquale Calabrese

The time evolution of the entanglement entropy in non-equilibrium quantum systems provides crucial information about the structure of the time-dependent state. For quantum quench protocols, by combining a quasiparticle picture for the entanglement spreading with the exact knowledge of the stationary state provided by Bethe ansatz, it is possible to obtain an exact and analytic description of the evolution of the entanglement entropy. Here we discuss the application of these ideas to several integrable models. First we show that for non-interacting systems, both bosonic and fermionic, the exact time-dependence of the entanglement entropy can be derived by elementary techniques and without solving the dynamics. We then provide exact results for interacting spin chains that are carefully tested against numerical simulations. Finally, we apply this method to integrable one-dimensional Bose gases (Lieb-Liniger model) both in the attractive and repulsive regimes. We highlight a peculiar behaviour of the entanglement entropy due to the absence of a maximum velocity of excitations.

2019 ◽  
Vol 6 (5) ◽  
Author(s):  
Jean-Marie Stéphan

We study the edge behavior of inhomogeneous one-dimensional quantum systems, such as Lieb-Liniger models in traps or spin chains in spatially varying fields. For free systems these fall into several universality classes, the most generic one being governed by the Tracy-Widom distribution. We investigate in this paper the effect of interactions. Using semiclassical arguments, we show that since the density vanishes to leading order, the strong interactions in the bulk are renormalized to zero at the edge, which simply explains the survival of Tracy-Widom scaling in general. For integrable systems, it is possible to push this argument further, and determine exactly the remaining length scale which controls the variance of the edge distribution. This analytical prediction is checked numerically, with excellent agreement. We also study numerically the edge scaling at fronts generated by quantum quenches, which provide new universality classes awaiting theoretical explanation.


Author(s):  
Pasquale Calabrese

These are lecture notes for a short course given at the Les Houches Summer School on ``Integrability in Atomic and Condensed Matter Physics'', in summer 2018. Here, I pedagogically discuss recent advances in the study of the entanglement spreading during the non-equilibrium dynamics of isolated integrable quantum systems. I first introduce the idea that the stationary thermodynamic entropy is the entanglement accumulated during the non-equilibrium dynamics and then join such an idea with the quasiparticle picture for the entanglement spreading to provide quantitive predictions for the time evolution of the entanglement entropy in arbitrary integrable models, regardless of the interaction strength.


Author(s):  
E. J. Torres-Herrera ◽  
Lea F. Santos

A main feature of a chaotic quantum system is a rigid spectrum where the levels do not cross. We discuss how the presence of level repulsion in lattice many-body quantum systems can be detected from the analysis of their time evolution instead of their energy spectra. This approach is advantageous to experiments that deal with dynamics, but have limited or no direct access to spectroscopy. Dynamical manifestations of avoided crossings occur at long times. They correspond to a drop, referred to as correlation hole, below the asymptotic value of the survival probability and to a bulge above the saturation point of the von Neumann entanglement entropy and the Shannon information entropy. By contrast, the evolution of these quantities at shorter times reflects the level of delocalization of the initial state, but not necessarily a rigid spectrum. The correlation hole is a general indicator of the integrable–chaos transition in disordered and clean models and as such can be used to detect the transition to the many-body localized phase in disordered interacting systems. This article is part of the themed issue ‘Breakdown of ergodicity in quantum systems: from solids to synthetic matter’.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Lorenzo Bianchi ◽  
Adam Chalabi ◽  
Vladimír Procházka ◽  
Brandon Robinson ◽  
Jacopo Sisti

Abstract We study co-dimension two monodromy defects in theories of conformally coupled scalars and free Dirac fermions in arbitrary d dimensions. We characterise this family of conformal defects by computing the one-point functions of the stress-tensor and conserved current for Abelian flavour symmetries as well as two-point functions of the displacement operator. In the case of d = 4, the normalisation of these correlation functions are related to defect Weyl anomaly coefficients, and thus provide crucial information about the defect conformal field theory. We provide explicit checks on the values of the defect central charges by calculating the universal part of the defect contribution to entanglement entropy, and further, we use our results to extract the universal part of the vacuum Rényi entropy. Moreover, we leverage the non-supersymmetric free field results to compute a novel defect Weyl anomaly coefficient in a d = 4 theory of free $$ \mathcal{N} $$ N = 2 hypermultiplets. Including singular modes in the defect operator product expansion of fundamental fields, we identify notable relevant deformations in the singular defect theories and show that they trigger a renormalisation group flow towards an IR fixed point with the most regular defect OPE. We also study Gukov-Witten defects in free d = 4 Maxwell theory and show that their central charges vanish.


2018 ◽  
Vol 2018 ◽  
pp. 1-27
Author(s):  
Sagar F. Lokhande

We use a simple holographic toy model to study global quantum quenches in strongly coupled, hyperscaling-violating-Lifshitz quantum field theories using entanglement entropy as a probe. Generalizing our conformal field theory results, we show that the holographic entanglement entropy of small subsystems can be written as a simple linear response relation. We use this relation to derive a time-dependent first law of entanglement entropy. In general, this law has a time-dependent term resembling relative entropy which we propose as a good order parameter to characterize out-of-equilibrium states in the post-quench evolution. We use these tools to study a broad class of quantum quenches in detail: instantaneous, power law, and periodic.


2018 ◽  
Vol 29 (10) ◽  
pp. 1850098 ◽  
Author(s):  
R. F. S. Andrade ◽  
A. M. C. Souza

Properties of one-dimensional discrete-time quantum walks (DTQWs) are sensitive to the presence of inhomogeneities in the substrate, which can be generated by defining position-dependent coin operators. Deterministic aperiodic sequences of two or more symbols provide ideal environments where these properties can be explored in a controlled way. Based on an exhaustive numerical study, this work discusses a two-coin model resulting from the construction rules that lead to the usual fractal Cantor set. Although the fraction of the less frequent coin [Formula: see text] as the size of the chain is increased, it leaves peculiar properties in the walker dynamics. They are characterized by the wave function, from which results for the probability distribution and its variance, as well as the entanglement entropy, were obtained. A number of results for different choices of the two coins are presented. The entanglement entropy has shown to be very sensitive to uncovering subtle quantum effects present in the model.


2017 ◽  
Vol 119 (10) ◽  
Author(s):  
Cătălin Paşcu Moca ◽  
Márton Kormos ◽  
Gergely Zaránd

Sign in / Sign up

Export Citation Format

Share Document