scholarly journals Quantum quenches to the attractive one-dimensional Bose gas: exact results

2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Lorenzo Piroli ◽  
Pasquale Calabrese ◽  
Fabian Essler

We study quantum quenches to the one-dimensional Bose gas with attractive interactions in the case when the initial state is an ideal one-dimensional Bose condensate. We focus on properties of the stationary state reached at late times after the quench. This displays a finite density of multi-particle bound states, whose rapidity distribution is determined exactly by means of the quench action method. We discuss the relevance of the multi-particle bound states for the physical properties of the system, computing in particular the stationary value of the local pair correlation function g_2g2.

2017 ◽  
Vol 3 (3) ◽  
Author(s):  
Jacopo De Nardis ◽  
Milosz Panfil ◽  
Andrea Gambassi ◽  
Leticia Cugliandolo ◽  
Robert Konik ◽  
...  

Quantum integrable models display a rich variety of non-thermal excited states with unusual properties. The most common way to probe them is by performing a quantum quench, i.e., by letting a many-body initial state unitarily evolve with an integrable Hamiltonian. At late times these systems are locally described by a generalized Gibbs ensemble with as many effective temperatures as their local conserved quantities. The experimental measurement of this macroscopic number of temperatures remains elusive. Here we show that they can be obtained for the Bose gas in one spatial dimension by probing the dynamical structure factor of the system after the quench and by employing a generalized fluctuation-dissipation theorem that we provide. Our procedure allows us to completely reconstruct the stationary state of a quantum integrable system from state-of-the-art experimental observations.


2021 ◽  
Vol 103 (16) ◽  
Author(s):  
Rebekka Koch ◽  
Alvise Bastianello ◽  
Jean-Sébastien Caux

2020 ◽  
Vol 35 (23) ◽  
pp. 2050140
Author(s):  
Eduardo López ◽  
Clara Rojas

We solve the one-dimensional time-independent Klein–Gordon equation in the presence of a smooth potential well. The bound state solutions are given in terms of the Whittaker [Formula: see text] function, and the antiparticle bound state is discussed in terms of potential parameters.


1985 ◽  
Vol 111 (8-9) ◽  
pp. 419-422 ◽  
Author(s):  
N.M. Bogoliubov ◽  
V.E. Korepin

2006 ◽  
Vol 74 (4) ◽  
Author(s):  
P. J. Forrester ◽  
N. E. Frankel ◽  
M. I. Makin

2014 ◽  
Vol 31 (10) ◽  
pp. 2078-2087 ◽  
Author(s):  
Michael L. Larsen ◽  
Clarissa A. Briner ◽  
Philip Boehner

Abstract The spatial positions of individual aerosol particles, cloud droplets, or raindrops can be modeled as a point processes in three dimensions. Characterization of three-dimensional point processes often involves the calculation or estimation of the radial distribution function (RDF) and/or the pair-correlation function (PCF) for the system. Sampling these three-dimensional systems is often impractical, however, and, consequently, these three-dimensional systems are directly measured by probing the system along a one-dimensional transect through the volume (e.g., an aircraft-mounted cloud probe measuring a thin horizontal “skewer” through a cloud). The measured RDF and PCF of these one-dimensional transects are related to (but not, in general, equal to) the RDF/PCF of the intrinsic three-dimensional systems from which the sample was taken. Previous work examined the formal mathematical relationship between the statistics of the intrinsic three-dimensional system and the one-dimensional transect; this study extends the previous work within the context of realistic sampling variability. Natural sampling variability is found to constrain substantially the usefulness of applying previous theoretical relationships. Implications for future sampling strategies are discussed.


2019 ◽  
Vol 99 (4) ◽  
Author(s):  
Sophie S. Shamailov ◽  
Joachim Brand

Sign in / Sign up

Export Citation Format

Share Document