scholarly journals Three-Dimensional General-Relativistic Magnetohydrodynamic Simulations of Remnant Accretion Disks from Neutron Star Mergers: Outflows and r -Process Nucleosynthesis

2017 ◽  
Vol 119 (23) ◽  
Author(s):  
Daniel M. Siegel ◽  
Brian D. Metzger
2019 ◽  
Vol 490 (4) ◽  
pp. 4811-4825 ◽  
Author(s):  
I M Christie ◽  
A Lalakos ◽  
A Tchekhovskoy ◽  
R Fernández ◽  
F Foucart ◽  
...  

ABSTRACT Neutron star mergers are unique laboratories of accretion, ejection, and r-process nucleosynthesis. We used 3D general relativistic magnetohydrodynamic simulations to study the role of the post-merger magnetic geometry in the evolution of merger remnant discs around stationary Kerr black holes. Our simulations fully capture mass accretion, ejection, and jet production, owing to their exceptionally long duration exceeding 4 s. Poloidal post-merger magnetic field configurations produce jets with energies Ejet ∼ (4–30) × 1050 erg, isotropic equivalent energies Eiso ∼ (4–20) × 1052 erg, opening angles θjet ∼ 6–13°, and durations tj ≲ 1 s. Accompanying the production of jets is the ejection of $f_\mathrm{ej}\sim 30\!-\!40{{\ \rm per\ cent}}$ of the post-merger disc mass, continuing out to times >1 s. We discover that a more natural, purely toroidal post-merger magnetic field geometry generates large-scale poloidal magnetic flux of alternating polarity and striped jets. The first stripe, of $E_\mathrm{jet}\simeq 2\times 10^{48}\, \mathrm{erg}$, Eiso ∼ 1051 erg, θjet ∼ 3.5–5°, and tj ∼ 0.1 s, is followed by ≳4 s of striped jet activity with $f_\mathrm{ej}\simeq 27{{\ \rm per\ cent}}$. The dissipation of such stripes could power the short-duration gamma-ray burst (sGRB) prompt emission. Our simulated jet energies and durations span the range of sGRBs. We find that although the blue kilonova component is initially hidden from view by the red component, it expands faster, outruns the red component, and becomes visible to off-axis observers. In comparison to GW 170817/GRB 170817A, our simulations underpredict the mass of the blue relative to red component by a factor of few. Including the dynamical ejecta and neutrino absorption may reduce this tension.


2021 ◽  
Vol 502 (2) ◽  
pp. 1843-1855
Author(s):  
Antonios Nathanail ◽  
Ramandeep Gill ◽  
Oliver Porth ◽  
Christian M Fromm ◽  
Luciano Rezzolla

ABSTRACT We perform 3D general-relativistic magnetohydrodynamic simulations to model the jet break-out from the ejecta expected to be produced in a binary neutron-star merger. The structure of the relativistic outflow from the 3D simulation confirms our previous results from 2D simulations, namely, that a relativistic magnetized outflow breaking out from the merger ejecta exhibits a hollow core of θcore ≈ 4°, an opening angle of θjet ≳ 10°, and is accompanied by a wind of ejected matter that will contribute to the kilonova emission. We also compute the non-thermal afterglow emission of the relativistic outflow and fit it to the panchromatic afterglow from GRB170817A, together with the superluminal motion reported from VLBI observations. In this way, we deduce an observer angle of $\theta _{\rm obs}= 35.7^{\circ \, \, +1.8}_{\phantom{\circ \, \, }-2.2}$. We further compute the afterglow emission from the ejected matter and constrain the parameter space for a scenario in which the matter responsible for the thermal kilonova emission will also lead to a non-thermal emission yet to be observed.


Science ◽  
2012 ◽  
Vol 339 (6115) ◽  
pp. 49-52 ◽  
Author(s):  
Jonathan C. McKinney ◽  
Alexander Tchekhovskoy ◽  
Roger D. Blandford

Accreting black holes (BHs) produce intense radiation and powerful relativistic jets, which are affected by the BH’s spin magnitude and direction. Although thin disks might align with the BH spin axis via the Bardeen-Petterson effect, this does not apply to jet systems with thick disks. We used fully three-dimensional general relativistic magnetohydrodynamical simulations to study accreting BHs with various spin vectors and disk thicknesses and with magnetic flux reaching saturation. Our simulations reveal a “magneto-spin alignment” mechanism that causes magnetized disks and jets to align with the BH spin near BHs and to reorient with the outer disk farther away. This mechanism has implications for the evolution of BH mass and spin, BH feedback on host galaxies, and resolved BH images for the accreting BHs in SgrA* and M87.


2006 ◽  
Vol 2 (S238) ◽  
pp. 37-42
Author(s):  
Ryoji Matsumoto ◽  
Mami Machida

AbstractWe studied the origin of quasi-periodic oscillations (QPOs) of X-rays in black hole candidates by three-dimensional global resistive magnetohydrodynamic simulations of accretion disks. Initial state is a rotating disk threaded by weak toroidal magnetic fields. General relativistic effects are simulated by using the pseudo-Newtonian potential. When the temperature of the outer disk decreases, the accreting matter accumulates into an inner torus.We found that the inner torus is deformed into a crescent shape and that it shows sawtooth-like oscillations of magnetic energy with frequency 3-5Hz when the mass of the black hole is 10M⊙. The magnetic energy inside the torus is amplified until magnetic reconnection suddenly releases the accumulated magnetic energy. A new cycle of the oscillation starts when magnetic energy is amplified again. We found that high frequency QPOs with frequency around 100Hz in stellar mass black holes are excited when sawtooth-like oscillation appears in the inner torus.


2014 ◽  
Vol 89 (6) ◽  
Author(s):  
Roman Gold ◽  
Vasileios Paschalidis ◽  
Zachariah B. Etienne ◽  
Stuart L. Shapiro ◽  
Harald P. Pfeiffer

Sign in / Sign up

Export Citation Format

Share Document