Crystallinelike Ordering of Confined Liquids at the Moving Contact Line

2019 ◽  
Vol 122 (12) ◽  
Author(s):  
Kumar Nanjundiah ◽  
Anish Kurian ◽  
Sukhmanjot Kaur ◽  
Saranshu Singla ◽  
Ali Dhinojwala
2001 ◽  
Vol 11 (PR6) ◽  
pp. Pr6-199-Pr6-212 ◽  
Author(s):  
Y. Pomeau

2013 ◽  
Vol 715 ◽  
pp. 283-313 ◽  
Author(s):  
Yi Sui ◽  
Peter D. M. Spelt

AbstractUsing a slip-length-based level-set approach with adaptive mesh refinement, we have simulated axisymmetric droplet spreading for a dimensionless slip length down to $O(1{0}^{\ensuremath{-} 4} )$. The main purpose is to validate, and where necessary improve, the asymptotic analysis of Cox (J. Fluid Mech., vol. 357, 1998, pp. 249–278) for rapid droplet spreading/dewetting, in terms of the detailed interface shape in various regions close to the moving contact line and the relation between the apparent angle and the capillary number based on the instantaneous contact-line speed, $\mathit{Ca}$. Before presenting results for inertial spreading, simulation results are compared in detail with the theory of Hocking & Rivers (J. Fluid Mech., vol. 121, 1982, pp. 425–442) for slow spreading, showing that these agree very well (and in detail) for such small slip-length values, although limitations in the theoretically predicted interface shape are identified; a simple extension of the theory to viscous exterior fluids is also proposed and shown to yield similar excellent agreement. For rapid droplet spreading, it is found that, in principle, the theory of Cox can predict accurately the interface shapes in the intermediate viscous sublayer, although the inviscid sublayer can only be well presented when capillary-type waves are outside the contact-line region. However, $O(1)$ parameters taken to be unity by Cox must be specified and terms be corrected to ${\mathit{Ca}}^{+ 1} $ in order to achieve good agreement between the theory and the simulation, both of which are undertaken here. We also find that the apparent angle from numerical simulation, obtained by extrapolating the interface shape from the macro region to the contact line, agrees reasonably well with the modified theory of Cox. A simplified version of the inertial theory is proposed in the limit of negligible viscosity of the external fluid. Building on these results, weinvestigate the flow structure near the contact line, the shear stress and pressure along the wall, and the use of the analysis for droplet impact and rapid dewetting. Finally, we compare the modified theory of Cox with a recent experiment for rapid droplet spreading, the results of which suggest a spreading-velocity-dependent dynamic contact angle in the experiments. The paper is closed with a discussion of the outlook regarding the potential of using the present results in large-scale simulations wherein the contact-line region is not resolved down to the slip length, especially for inertial spreading.


2016 ◽  
Vol 236 ◽  
pp. 50-62
Author(s):  
Hongrok Shin ◽  
Ki Wan Bong ◽  
Chongyoup Kim

2021 ◽  
Vol 924 ◽  
Author(s):  
Akhil Varma ◽  
Anubhab Roy ◽  
Baburaj A. Puthenveettil

Abstract


2008 ◽  
Vol 605 ◽  
pp. 59-78 ◽  
Author(s):  
XIAO-PING WANG ◽  
TIEZHENG QIAN ◽  
PING SHENG

We simulate the moving contact line in two-dimensional chemically patterned channels using a diffuse-interface model with the generalized Navier boundary condition. The motion of the fluid–fluid interface in confined immiscible two-phase flows is modulated by the chemical pattern on the top and bottom surfaces, leading to a stick–slip behaviour of the contact line. The extra dissipation induced by this oscillatory contact-line motion is significant and increases rapidly with the wettability contrast of the pattern. A critical value of the wettability contrast is identified above which the effect of diffusion becomes important, leading to the interesting behaviour of fluid–fluid interface breaking, with the transport of the non-wetting fluid being assisted and mediated by rapid diffusion through the wetting fluid. Near the critical value, the time-averaged extra dissipation scales as U, the displacement velocity. By decreasing the period of the pattern, we show the solid surface to be characterized by an effective contact angle whose value depends on the material characteristics and composition of the patterned surfaces.


1997 ◽  
Vol 337 ◽  
pp. 49-66 ◽  
Author(s):  
Q. CHEN ◽  
E. RAMÉ ◽  
S. GAROFF

The dynamics of a spreading liquid body are dictated by the interface shape and flow field very near the moving contact line. The interface shape and flow field have been described by asymptotic models in the limit of small capillary number, Ca. Previous work established the validity and limitations of these models of the interface shape (Chen et al. 1995). Here, we study the flow field near the moving contact line. Using videomicroscopy, particle image velocimetry, and digital image analysis, we simultaneously make quantitative measurements of both the interface shape and flow field from 30 μm to a few hundred microns from the contact line. We compare our data to the modulated-wedge solution for the velocity field near a moving contact line (Cox 1986). The measured flow fields demonstrate quantitative agreement with predictions for Ca[les ]0.1, but deviations of ∼5% of the spreading velocity at Ca≈0.4. We observe that the interface shapes and flow fields become geometry independent near the contact line. Our experimental technique provides a way of measuring the interface shape and velocity field to be used as boundary conditions for numerical calculations of the macroscopic spreading dynamics.


2018 ◽  
Vol 839 ◽  
pp. 468-488 ◽  
Author(s):  
Yasufumi Yamamoto ◽  
Takahiro Ito ◽  
Tatsuro Wakimoto ◽  
Kenji Katoh

Droplet movement by electrowetting on dielectric (EWOD) in a Hele-Shaw cell is analysed theoretically and numerically. We propose a simple theoretical model for the motion, which describes well the voltage dependency of droplet speed below the saturation voltage as measured experimentally. The simulation method for numerical analyses is constructed by using the Young–Lippmann equation to represent EWOD and the generalised Navier boundary condition to represent the moving contact line in the context of the front-tracking method. With an adjusted slip parameter, the present full three-dimensional numerical simulation reproduces well the shape evolution and movement speed of droplets as observed experimentally. We verify the proposed theoretical model in numerical experiments with various shapes and voltages. Furthermore, we analyse theoretically the behaviour of the contact line at the onset of droplet motion as observed in the simulation and experiment, and we are able to estimate very well the time scale on which the contact angle changes.


Sign in / Sign up

Export Citation Format

Share Document