Diffusion of A Weakly Ionized Helium Plasma in A Metal Chamber Immersed in a Magnetic Field

1967 ◽  
Vol 18 (20) ◽  
pp. 829-830 ◽  
Author(s):  
S. Takeda ◽  
K. Minami ◽  
T. Uno
1967 ◽  
Vol 45 (10) ◽  
pp. 3199-3209 ◽  
Author(s):  
R. M. Clements ◽  
H. M. Skarsgard

Electron temperatures and densities measured in a weakly ionized helium afterglow with cylindrical double probes are compared with measurements obtained using a gated microwave radiometer and a microwave resonant cavity. The pressure was varied from 0.1 to 8.5 Torr. At low pressure, magnetic fields up to 0.11 T were applied. Independent of the values of the electron Larmor radii or particle mean free paths relative to the probe radius, the probes correctly measured the electron temperatures within an estimated random probable error of ±4% and a systematic error not exceeding ±4%. This demonstrates the validity, for the range of conditions studied, of a fundamental assumption of probe theory—that electrons in a retarding probe field are in a Maxwell–Boltzmann distribution at a temperature unaffected by the presence of the probe. Towards higher pressure the measurements show an increasing depression of the plasma density near the probe, associated with the diffusion to it. The applied magnetic field had no noticeable effect on the densities measured with the probes as compared with the cavity measurements.


Sign in / Sign up

Export Citation Format

Share Document