EXPERIMENTAL INVESTIGATION OF LANGMUIR PROBES

1967 ◽  
Vol 45 (10) ◽  
pp. 3199-3209 ◽  
Author(s):  
R. M. Clements ◽  
H. M. Skarsgard

Electron temperatures and densities measured in a weakly ionized helium afterglow with cylindrical double probes are compared with measurements obtained using a gated microwave radiometer and a microwave resonant cavity. The pressure was varied from 0.1 to 8.5 Torr. At low pressure, magnetic fields up to 0.11 T were applied. Independent of the values of the electron Larmor radii or particle mean free paths relative to the probe radius, the probes correctly measured the electron temperatures within an estimated random probable error of ±4% and a systematic error not exceeding ±4%. This demonstrates the validity, for the range of conditions studied, of a fundamental assumption of probe theory—that electrons in a retarding probe field are in a Maxwell–Boltzmann distribution at a temperature unaffected by the presence of the probe. Towards higher pressure the measurements show an increasing depression of the plasma density near the probe, associated with the diffusion to it. The applied magnetic field had no noticeable effect on the densities measured with the probes as compared with the cavity measurements.

1997 ◽  
Vol 68 (11) ◽  
pp. 4043-4050 ◽  
Author(s):  
D. Batani ◽  
S. Alba ◽  
P. Lombardi ◽  
A. Galassi

2019 ◽  
Vol 85 (6) ◽  
Author(s):  
Alessandro Geraldini ◽  
F. I. Parra ◽  
F. Militello

The magnetic presheath is a boundary layer occurring when magnetized plasma is in contact with a wall and the angle $\unicode[STIX]{x1D6FC}$ between the wall and the magnetic field $\boldsymbol{B}$ is oblique. Here, we consider the fusion-relevant case of a shallow-angle, $\unicode[STIX]{x1D6FC}\ll 1$ , electron-repelling sheath, with the electron density given by a Boltzmann distribution, valid for $\unicode[STIX]{x1D6FC}/\sqrt{\unicode[STIX]{x1D70F}+1}\gg \sqrt{m_{\text{e}}/m_{\text{i}}}$ , where $m_{\text{e}}$ is the electron mass, $m_{\text{i}}$ is the ion mass, $\unicode[STIX]{x1D70F}=T_{\text{i}}/ZT_{\text{e}}$ , $T_{\text{e}}$ is the electron temperature, $T_{\text{i}}$ is the ion temperature and $Z$ is the ionic charge state. The thickness of the magnetic presheath is of the order of a few ion sound Larmor radii $\unicode[STIX]{x1D70C}_{\text{s}}=\sqrt{m_{\text{i}}(ZT_{\text{e}}+T_{\text{i}})}/ZeB$ , where e is the proton charge and $B=|\boldsymbol{B}|$ is the magnitude of the magnetic field. We study the dependence on $\unicode[STIX]{x1D70F}$ of the electrostatic potential and ion distribution function in the magnetic presheath by using a set of prescribed ion distribution functions at the magnetic presheath entrance, parameterized by $\unicode[STIX]{x1D70F}$ . The kinetic model is shown to be asymptotically equivalent to Chodura’s fluid model at small ion temperature, $\unicode[STIX]{x1D70F}\ll 1$ , for $|\text{ln}\,\unicode[STIX]{x1D6FC}|>3|\text{ln}\,\unicode[STIX]{x1D70F}|\gg 1$ . In this limit, despite the fact that fluid equations give a reasonable approximation to the potential, ion gyro-orbits acquire a spatial extent that occupies a large portion of the magnetic presheath. At large ion temperature, $\unicode[STIX]{x1D70F}\gg 1$ , relevant because $T_{\text{i}}$ is measured to be a few times larger than $T_{\text{e}}$ near divertor targets of fusion devices, ions reach the Debye sheath entrance (and subsequently the wall) at a shallow angle whose size is given by $\sqrt{\unicode[STIX]{x1D6FC}}$ or $1/\sqrt{\unicode[STIX]{x1D70F}}$ , depending on which is largest.


Sign in / Sign up

Export Citation Format

Share Document