Universal Effective Potential for Scalar Field Theory in Three Dimensions by Monte Carlo Computation

1994 ◽  
Vol 73 (15) ◽  
pp. 2015-2018 ◽  
Author(s):  
M. M. Tsypin
1987 ◽  
Vol 35 (10) ◽  
pp. 3187-3192 ◽  
Author(s):  
Kerson Huang ◽  
Efstratios Manousakis ◽  
Janos Polonyi

2020 ◽  
Vol 80 (9) ◽  
Author(s):  
Dmitry S. Ageev ◽  
Andrey A. Bagrov ◽  
Askar A. Iliasov

AbstractIn this paper, we study $$\lambda \phi ^4$$ λ ϕ 4 scalar field theory defined on the unramified extension of p-adic numbers $${\mathbb {Q}}_{p^n}$$ Q p n . For different “space-time” dimensions n, we compute one-loop quantum corrections to the effective potential. Surprisingly, despite the unusual properties of non-Archimedean geometry, the Coleman–Weinberg potential of p-adic field theory has structure very similar to that of its real cousin. We also study two formal limits of the effective potential, $$p \rightarrow 1$$ p → 1 and $$p \rightarrow \infty $$ p → ∞ . We show that the $$p\rightarrow 1$$ p → 1 limit allows to reconstruct the canonical result for real field theory from the p-adic effective potential and provide an explanation of this fact. On the other hand, in the $$p\rightarrow \infty $$ p → ∞ limit, the theory exhibits very peculiar behavior with emerging logarithmic terms in the effective potential, which has no analogue in real theories.


2000 ◽  
Vol 579 (1-2) ◽  
pp. 379-410 ◽  
Author(s):  
Alberto Frizzo ◽  
Lorenzo Magnea ◽  
Rodolfo Russo

2011 ◽  
Author(s):  
Angel A. García-Chung ◽  
Hugo A. Morales-Técotl ◽  
Luis Arturo Ureña-López ◽  
Hugo Aurelio Morales-Técotl ◽  
Román Linares-Romero ◽  
...  

1998 ◽  
Vol 13 (31) ◽  
pp. 2495-2501 ◽  
Author(s):  
KURT LANGFELD ◽  
HUGO REINHARDT

A scalar field theory in four space–time dimensions is proposed, which embodies a scalar condensate, but is free of the conceptual problems of standard ϕ4-theory. We propose an N-component, O(N)-symmetric scalar field theory, which is originally defined on the lattice. The scalar lattice model is analytically solved in the large-N limit. The continuum limit is approached via an asymptotically free scaling. The renormalized theory evades triviality, and furthermore gives rise to a dynamically formed mass of the scalar particle. The model might serve as an alternative to the Higgs sector of the standard model, where the quantum level of the standard ϕ4-theory contradicts phenomenology due to triviality.


Sign in / Sign up

Export Citation Format

Share Document