scholarly journals Coleman–Weinberg potential in p-adic field theory

2020 ◽  
Vol 80 (9) ◽  
Author(s):  
Dmitry S. Ageev ◽  
Andrey A. Bagrov ◽  
Askar A. Iliasov

AbstractIn this paper, we study $$\lambda \phi ^4$$ λ ϕ 4 scalar field theory defined on the unramified extension of p-adic numbers $${\mathbb {Q}}_{p^n}$$ Q p n . For different “space-time” dimensions n, we compute one-loop quantum corrections to the effective potential. Surprisingly, despite the unusual properties of non-Archimedean geometry, the Coleman–Weinberg potential of p-adic field theory has structure very similar to that of its real cousin. We also study two formal limits of the effective potential, $$p \rightarrow 1$$ p → 1 and $$p \rightarrow \infty $$ p → ∞ . We show that the $$p\rightarrow 1$$ p → 1 limit allows to reconstruct the canonical result for real field theory from the p-adic effective potential and provide an explanation of this fact. On the other hand, in the $$p\rightarrow \infty $$ p → ∞ limit, the theory exhibits very peculiar behavior with emerging logarithmic terms in the effective potential, which has no analogue in real theories.

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
L. L. Williams

This paper calculates the Kaluza field equations with the aid of a computer package for tensor algebra, xAct. The xAct file is provided with this paper. We find that Thiry’s field equations are correct, but only under limited circumstances. The full five-dimensional field equations under the cylinder condition are provided here, and we see that most of the other references miss at least some terms from them. We go on to establish the remarkable Kaluza Lagrangian, and verify that the field equations calculated from it match those calculated with xAct, thereby demonstrating self-consistency of these results. Many of these results can be found scattered throughout the literature, and we provide some pointers for historical purposes. But our intent is to provide a definitive exposition of the field equations of the classical, five-dimensional metric ansatz of Kaluza, along with the computer algebra data file to verify them, and then to recover the unique Lagrangian for the theory. In common terms, the Kaluza theory is an “ω=0” scalar field theory, but with unique electrodynamic couplings.


1980 ◽  
Vol 130 (1) ◽  
pp. 215-248 ◽  
Author(s):  
Lowell S Brown ◽  
John C Collins

2013 ◽  
Vol 28 (08) ◽  
pp. 1350023 ◽  
Author(s):  
ABOUZEID M. SHALABY

In this paper, we study the vacuum stability of the classical unstable (-ϕ4) scalar field potential. Regarding this, we obtained the effective potential, up to second-order in the coupling, for the theory in 1+1 and 2+1 space–time dimensions. We found that the obtained effective potential is bounded-from-below, which proves the vacuum stability of the theory in space–time dimensions higher than the previously studied 0+1 case. In our calculations, we used the canonical quantization regime in which one deals with operators rather than classical functions used in the path integral formulation. Therefore, the non-Hermiticity of the effective field theory is obvious. Moreover, the method we employ implements the canonical equal-time commutation relations and the Heisenberg picture for the operators. Thus, the metric operator is implemented in the calculations of the transition amplitudes. Accordingly, the method avoids the very complicated calculations needed in other methods for the metric operator. To test the accuracy of our results, we obtained the exponential behavior of the vacuum condensate for small coupling values, which has been obtained in the literature using other methods. We assert that this work is interesting, as all the studies in the literature advocate the stability of the (-ϕ4) theory at the quantum mechanical level while our work extends the argument to the level of field quantization.


Universe ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 11
Author(s):  
Alexander A. Chernitskii

The scalar field of space-time film is considered as unified fundamental field. The field model under consideration is the space-time generalization of the model for a two-dimensional thin film. The force and metrical interactions between solitons are considered. These interactions correspond to the electromagnetic and gravitational interactions respectively. The metrical interaction and its correspondence to the gravitational one are considered in detail. The practical applications of this approach are briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document