scholarly journals Hydrodynamic Modes in Dense Trapped Ultracold Gases

2002 ◽  
Vol 89 (19) ◽  
Author(s):  
R. Combescot ◽  
X. Leyronas
2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
M. Asadi ◽  
H. Soltanpanahi ◽  
F. Taghinavaz

Abstract We investigate the time-dependent perturbations of strongly coupled $$ \mathcal{N} $$ N = 4 SYM theory at finite temperature and finite chemical potential with a second order phase transition. This theory is modelled by a top-down Einstein-Maxwell-dilaton description which is a consistent truncation of the dimensional reduction of type IIB string theory on AdS5×S5. We focus on spin-1 and spin-2 sectors of perturbations and compute the linearized hydrodynamic transport coefficients up to the third order in gradient expansion. We also determine the radius of convergence of the hydrodynamic mode in spin-1 sector and the lowest non-hydrodynamic modes in spin-2 sector. Analytically, we find that all the hydrodynamic quantities have the same critical exponent near the critical point θ = $$ \frac{1}{2} $$ 1 2 . Moreover, we propose a relation between symmetry enhancement of the underlying theory and vanishing of the only third order hydrodynamic transport coefficient θ1, which appears in the shear dispersion relation of a conformal theory on a flat background.


1998 ◽  
Vol 57 (4) ◽  
pp. 2938-2941 ◽  
Author(s):  
G. M. Kavoulakis ◽  
C. J. Pethick ◽  
H. Smith

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Matteo Baggioli ◽  
Sebastian Grieninger ◽  
Li Li

Abstract We perform a detailed analysis of a large class of effective holographic models with broken translations at finite charge density and magnetic field. We exhaustively discuss the dispersion relations of the hydrodynamic modes at zero magnetic field and successfully match them to the predictions from charged hydrodynamics. At finite magnetic field, we identify the presence of an expected type-B Goldstone boson Re[ω] ∼ k2, known as magnetophonon and its gapped partner — the magnetoplasmon. We discuss their properties in relation to the effective field theory and hydrodynamics expectations. Finally, we compute the optical conductivities and the quasinormal modes at finite magnetic field. We observe that the pinning frequency of the magneto-resonance peak increases with the magnetic field, in agreement with experimental data on certain 2D materials, revealing the quantum nature of the holographic pinning mechanism.


Sign in / Sign up

Export Citation Format

Share Document