scholarly journals Real Space Imaging of One-Dimensional Standing Waves: Direct Evidence for a Luttinger Liquid

2004 ◽  
Vol 93 (16) ◽  
Author(s):  
Jhinhwan Lee ◽  
S. Eggert ◽  
H. Kim ◽  
S.-J. Kahng ◽  
H. Shinohara ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qiang Wang ◽  
Yong Ge ◽  
Hong-xiang Sun ◽  
Haoran Xue ◽  
Ding Jia ◽  
...  

AbstractCrystalline materials can host topological lattice defects that are robust against local deformations, and such defects can interact in interesting ways with the topological features of the underlying band structure. We design and implement a three dimensional acoustic Weyl metamaterial hosting robust modes bound to a one-dimensional topological lattice defect. The modes are related to topological features of the bulk bands, and carry nonzero orbital angular momentum locked to the direction of propagation. They span a range of axial wavenumbers defined by the projections of two bulk Weyl points to a one-dimensional subspace, in a manner analogous to the formation of Fermi arc surface states. We use acoustic experiments to probe their dispersion relation, orbital angular momentum locked waveguiding, and ability to emit acoustic vortices into free space. These results point to new possibilities for creating and exploiting topological modes in three-dimensional structures through the interplay between band topology in momentum space and topological lattice defects in real space.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sheng Wang ◽  
SeokJae Yoo ◽  
Sihan Zhao ◽  
Wenyu Zhao ◽  
Salman Kahn ◽  
...  

AbstractSurface plasmons, collective electromagnetic excitations coupled to conduction electron oscillations, enable the manipulation of light–matter interactions at the nanoscale. Plasmon dispersion of metallic structures depends sensitively on their dimensionality and has been intensively studied for fundamental physics as well as applied technologies. Here, we report possible evidence for gate-tunable hybrid plasmons from the dimensionally mixed coupling between one-dimensional (1D) carbon nanotubes and two-dimensional (2D) graphene. In contrast to the carrier density-independent 1D Luttinger liquid plasmons in bare metallic carbon nanotubes, plasmon wavelengths in the 1D-2D heterostructure are modulated by 75% via electrostatic gating while retaining the high figures of merit of 1D plasmons. We propose a theoretical model to describe the electromagnetic interaction between plasmons in nanotubes and graphene, suggesting plasmon hybridization as a possible origin for the observed large plasmon modulation. The mixed-dimensional plasmonic heterostructures may enable diverse designs of tunable plasmonic nanodevices.


2019 ◽  
Vol 516 ◽  
pp. 212-221
Author(s):  
Hadi Cheraghi ◽  
Majid Jafar Tafreshi ◽  
Saeed Mahdavifar

1995 ◽  
Vol 09 (05) ◽  
pp. 249-269
Author(s):  
DONGXIAO YUE

We review some of our recent results on the potential scattering in a weakly interacting one-dimensional(1D) electron gas. The technique we developed is a poor man's renormalization group procedure in the scattered wave basis. This technique can treat the renormalizations of the scattering on the barrier and the scattering between the electrons in a coherent way, and it allows us to find the scattering amplitudes on a localized potential of arbitrary strength for electrons at any energy. The obtained phase shifts are used to study the Fermi-edge singularity in an interacting 1D electron system, where anomalous exponent of the power-law singularity in the vicinity of the edge is found. The transmission coefficient is directly related to the conductance of a 1D channel by the Landauer formula. Simple formulas that describe the conductance at any temperature are derived. In spin-[Formula: see text] systems, the electron–electron backscattering induces renormalizations of the interaction constants, which causes the low-temperature conductance to deviate from the results of the Luttinger liquid theory. In particular, the temperature dependence of the conductance may become nonmonotonic. In the presence of a magnetic field, backscattering gives rise to a peak in the differential conductance at bias equal to the Zeeman splitting.


1991 ◽  
Vol 05 (01n02) ◽  
pp. 3-30 ◽  
Author(s):  
J. Carmelo ◽  
P. Horsch ◽  
P.A. Bares ◽  
A.A. Ovchinnikov

The Landau-Luttinger liquid formulation is used to investigate the physics of the one-dimensional Hubbard model in a magnetic field of arbitrary strength H. The low lying charge and spin excitations are studied. A novel branch of sound wave-like spin excitations arises for H>0. The low temperature thermodynamics is considered in some detail.


Author(s):  
Niccolo Traverso Ziani ◽  
Fabio Cavaliere ◽  
Karina Guerrero Becerra ◽  
Maura Sassetti

The simplest possible structural transition that an electronic system can undergo is Wigner crystallization. The aim of this short review is to discuss the main aspects of three recent experimets on the one dimensional Wigner molecule, starting from scratch. To achieve this task, the Luttinger liquid theory of weakly and strongly interacting fermions will be shortly addressed, together with the basic properties of carbon nanotubes that are require. Then, the most relevant properties of Wigner molecules will be addressed, and finally the experiments will be described.


Sign in / Sign up

Export Citation Format

Share Document