scholarly journals Designer flat bands in quasi-one-dimensional atomic lattices

2020 ◽  
Vol 2 (4) ◽  
Author(s):  
Md Nurul Huda ◽  
Shawulienu Kezilebieke ◽  
Peter Liljeroth
2003 ◽  
Vol 02 (01n02) ◽  
pp. 109-116
Author(s):  
Hiroyuki Takeda ◽  
Katsumi Yoshino

We theoretically evaluate the electronic band structures in carbon nanotubes with nanoscale periodic pores with a tight-binding approximation of π electrons, and demonstrate that band gaps of the carbon nanotubes with nanoscale periodic pores differ significantly from those of conventional carbon nanotubes. The band gaps of the carbon nanotubes with nanoscale periodic pores depend strongly on the size of pores and inter-pore distances. In some carbon nanotubes with nanoscale periodic pores, band gaps are constant as a function of their circumferences. In other ones, band gaps have the exact periodicity of three as a function of their circumferences. Those behaviors can be explained by taking properties of nanoscale periodic porous graphite into consideration. In some carbon nanotubes with relatively large nanoscale periodic pores, flat bands appear, which may cause singular properties about magnetism in one-dimensional porous carbon nanotubes.


2021 ◽  
Vol 2015 (1) ◽  
pp. 012088
Author(s):  
Y. Marques ◽  
I. A. Shelykh ◽  
I. V. Iorsh

Abstract We consider a two-dimensional extension of the one-dimensional waveguide quantum electrodynamics and investigate the nature of linear excitations in two-dimensional arrays of qubits (particularly, semiconductor quantum dots) coupled to networks of chiral waveguides. We show that the combined effects of chirality and long-range photon mediated qubit-qubit interactions lead to the emergence of the two-dimensional flat bands in the polaritonic spectrum, corresponding to slow strongly correlated light.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
D. M. Kennes ◽  
L. Xian ◽  
M. Claassen ◽  
A. Rubio

Sign in / Sign up

Export Citation Format

Share Document