scholarly journals Non-Fermi Liquids as Ersatz Fermi Liquids: General Constraints on Compressible Metals

2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Dominic V. Else ◽  
Ryan Thorngren ◽  
T. Senthil
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Nima Afkhami-Jeddi ◽  
Henry Cohn ◽  
Thomas Hartman ◽  
Amirhossein Tajdini

Abstract We study the torus partition functions of free bosonic CFTs in two dimensions. Integrating over Narain moduli defines an ensemble-averaged free CFT. We calculate the averaged partition function and show that it can be reinterpreted as a sum over topologies in three dimensions. This result leads us to conjecture that an averaged free CFT in two dimensions is holographically dual to an exotic theory of three-dimensional gravity with U(1)c×U(1)c symmetry and a composite boundary graviton. Additionally, for small central charge c, we obtain general constraints on the spectral gap of free CFTs using the spinning modular bootstrap, construct examples of Narain compactifications with a large gap, and find an analytic bootstrap functional corresponding to a single self-dual boson.


1983 ◽  
Vol 6 (3-4) ◽  
pp. 333-374
Author(s):  
H.J.M. Goeman ◽  
L.P.J. Groenewegen ◽  
H.C.M. Kleijn ◽  
G. Rozenberg

This paper continues the investigation froll1 [Goeman et al.] concerning the use of sets of places of a Petri net as additional (to input places) constraints for granting concession. Now interpretations of more general constraints are considered and expressed as Boolean expressions. This gives rise to various classes of constrained Petri nets. These are compared in the language theoretical framework introduced in [Goeman et al.]. An upperbound for the language defining power is found in the class of context-free programmed languages.


1995 ◽  
Vol 58 (9) ◽  
pp. 977-1116 ◽  
Author(s):  
J Voit

1997 ◽  
Vol 06 (04) ◽  
pp. 423-450 ◽  
Author(s):  
Baher A. El-Geresy ◽  
Alia I. Abdelmoty

In this paper we propose a general approach for reasoning in space. The approach is composed of a set of two general constraints to govern the spatial relationships between objects in space, and two rules to propagate relationships between those objects. The approach is based on a novel representation of the topology of the space as a connected set of components using a structure called adjacency matrix which can capture the topology of objects of different complexity in any space dimension. The formalism is used to explain spatial compositions resulting in indefinite and definite relations and it is shown to be applicable to reasoning in the temporal domain. The main contribution of the formalism is that it provides means for constructing composition tables for objects with arbitrary complexity in any space dimension. A new composition table between spatial objects of different types is presented. A major advantage of the method is that reasoning between objects of any complexity can be achieved in a defined limited number of steps. Hence, the incorporation of spatial reasoning mechanisms in spatial information systems becomes possible.


2013 ◽  
Vol 88 (12) ◽  
Author(s):  
Raghu Mahajan ◽  
Maissam Barkeshli ◽  
Sean A. Hartnoll
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document