vertex corrections
Recently Published Documents


TOTAL DOCUMENTS

159
(FIVE YEARS 16)

H-INDEX

26
(FIVE YEARS 4)

2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Víctor Bresó-Pla ◽  
Adam Falkowski ◽  
Martín González-Alonso

Abstract We study the forward-backward asymmetry AFB in pp → ℓ+ℓ− at the Z peak within the Standard Model Effective Field Theory (SMEFT). We find that this observable provides per mille level constraints on the vertex corrections of the Z boson to quarks, which close a flat direction in the electroweak precision SMEFT fit. Moreover, we show that current AFB data is precise enough so that its inclusion in the fit improves significantly LEP bounds even in simple New Physics setups. This demonstrates that the LHC can compete with and complement LEP when it comes to precision measurements of the Z boson properties.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. Baghran ◽  
M. M. Tehranchi ◽  
A. Phirouznia

AbstractSpin to pseudo-spin conversion by which the non-equilibrium normal sublattice pseudo-spin polarization could be achieved by magnetic field has been proposed in graphene. Calculations have been performed within the Kubo approach for both pure and disordered graphene including vertex corrections of impurities. Results indicate that the normal magnetic field $$B_z$$ B z produces pseudo-spin polarization in graphene regardless of whether the contribution of vertex corrections has been taken into account or not. This is because of non-vanishing correlation between the $$\sigma _z$$ σ z and $$\tau _z$$ τ z provided by the co-existence of extrinsic Rashba and intrinsic spin–orbit interactions which combines normal spin and pseudo-spin. For the case of pure graphene, valley-symmetric spin to pseudo-spin response function is obtained. Meanwhile, by taking into account the vertex corrections of impurities the obtained response function is weakened by several orders of magnitude with non-identical contributions of different valleys. This valley-asymmetry originates from the inversion symmetry breaking generated by the scattering matrix. Finally, spin to pseudo-spin conversion in graphene could be realized as a practical technique for both generation and manipulation of normal sublattice pseudo-spin polarization by an accessible magnetic field in a easy way. This novel proposed effect not only offers the opportunity to selective manipulation of carrier densities on different sublattice but also could be employed in data transfer technology. The normal pseudo-spin polarization which manifests it self as electron population imbalance of different sublattices can be detected by optical spectroscopy measurements.


2020 ◽  
Vol 11 ◽  
pp. 1178-1189
Author(s):  
Kamila A Szewczyk ◽  
Izabela A Domagalska ◽  
Artur P Durajski ◽  
Radosław Szczęśniak

When considering a Li-intercalated hexagonal boron nitride bilayer (Li-hBN), the vertex corrections of electron–phonon interaction cannot be omitted. This is evidenced by the very high value of the ratio λωD/εF ≈ 0.46, where λ is the electron–phonon coupling constant, ωD is the Debye frequency, and εF represents the Fermi energy. Due to nonadiabatic effects, the phonon–induced superconducting state in Li-hBN is characterized by much lower values of the critical temperature (T LOVC C ∈ {19.1, 15.5, 11.8} K, for μ* ∈ {0.1, 0.14, 0.2}, respectively) than would result from calculations not taking this effect into account (T ME C∈ {31.9, 26.9, 21} K). From the technological point of view, the low value of T C limits the possible applications of Li-hBN. The calculations were carried out under the classic Migdal–Eliashberg formalism (ME) and the Eliashberg theory with lowest-order vertex corrections (LOVC). We show that the vertex corrections of higher order (λ3) lower the value of T LOVC C by a few percent.


Sign in / Sign up

Export Citation Format

Share Document