scholarly journals A New Insight into Application for Barley Chromosome Addition Lines of Common Wheat: Achievement of Stigmasterol Accumulation

2011 ◽  
Vol 157 (3) ◽  
pp. 1555-1567 ◽  
Author(s):  
Jianwei Tang ◽  
Kiyoshi Ohyama ◽  
Kanako Kawaura ◽  
Hiromi Hashinokuchi ◽  
Yoko Kamiya ◽  
...  
Genome ◽  
1996 ◽  
Vol 39 (2) ◽  
pp. 272-276 ◽  
Author(s):  
B. Friebe ◽  
E. D. Badaeva ◽  
B. S. Gill ◽  
N. A. Tuleen

C-banded karyotypes of a complete set of 14 Triticum peregrinum whole chromosome addition lines and 25 telosomic addition lines are reported. The added T. peregrinum chromosomes were not structurally rearranged compared with the corresponding chromosomes of the donor accession. Comprehensive karyotypic analysis confirmed Triticum umbellulatum as the donor species of the Uv genome and identified Triticum longissimum as the donor species of the Sv genome of T. peregrinum. Neither the Uv nor Sv genome chromosomes of the T. peregrinum accession showed large modifications when compared with the ancestral U and S1 genomes. Key words : Triticum aestivum, Triticum peregrinum, Triticum umbellulatum, Triticum longissimum, chromosome addition lines, C-banding.


Heredity ◽  
1984 ◽  
Vol 52 (3) ◽  
pp. 425-429 ◽  
Author(s):  
J L Santos ◽  
J R Lacadena ◽  
M C Cermeño ◽  
J Orellana

1981 ◽  
Vol 37 (2) ◽  
pp. 215-219 ◽  
Author(s):  
A. K. M. R. Islam ◽  
K. W. Shepherd

SUMMARYThe possibility of using Hordeum bulbosum Crosses to facilitate production of disomic wheat–barley addition lines from monosomic additions was investigated. Aneuhaploids with 22 chromosomes were obtained in the expected gametic frequencies after crossing monosomic, disomio and monotelo-disomic addition lines, involving four different barley chromosomes, as the female parent with tetraploid H. bulbosum. Thus the added barley chromosomes were not eliminated when preferential elimination of the bulbosum chromosomes took place in the hybrid embryos. Disomic addition lines were obtained after treating the aneuhaploids with colchicine. This method could have wider application in the production of other wheat–alien chromosome disomic addition lines, especially where the transmission frequency of the alien chromosome through the pollen is very low, but its use will depend on the wheat parent being crossarle with H. bulbosum and the alien chromosome being retained during the elimination of bulbosum chromosomes.


Genetics ◽  
2000 ◽  
Vol 156 (1) ◽  
pp. 327-339 ◽  
Author(s):  
O Riera-Lizarazu ◽  
M I Vales ◽  
E V Ananiev ◽  
H W Rines ◽  
R L Phillips

Abstract In maize (Zea mays L., 2n = 2x = 20), map-based cloning and genome organization studies are often complicated because of the complexity of the genome. Maize chromosome addition lines of hexaploid cultivated oat (Avena sativa L., 2n = 6x = 42), where maize chromosomes can be individually manipulated, represent unique materials for maize genome analysis. Maize chromosome addition lines are particularly suitable for the dissection of a single maize chromosome using radiation because cultivated oat is an allohexaploid in which multiple copies of the oat basic genome provide buffering to chromosomal aberrations and other mutations. Irradiation (gamma rays at 30, 40, and 50 krad) of a monosomic maize chromosome 9 addition line produced maize chromosome 9 radiation hybrids (M9RHs)—oat lines possessing different fragments of maize chromosome 9 including intergenomic translocations and modified maize addition chromosomes with internal and terminal deletions. M9RHs with 1 to 10 radiation-induced breaks per chromosome were identified. We estimated that a panel of 100 informative M9RHs (with an average of 3 breaks per chromosome) would allow mapping at the 0.5- to 1.0-Mb level of resolution. Because mapping with maize chromosome addition lines and radiation hybrid derivatives involves assays for the presence or absence of a given marker, monomorphic markers can be quickly and efficiently mapped to a chromosome region. Radiation hybrid derivatives also represent sources of region-specific DNA for cloning of genes or DNA markers.


Sign in / Sign up

Export Citation Format

Share Document